Skip to main content
Log in

The effect of flocculation on the size distributions of bottom sediment in coastal inlets: Implications for contaminant transport

  • Sediment/Water Dynamics
  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Grain size is the most basic of classification criteria for sediments. The size distribution of a given sediment records the physical transport processes involved in its formation. By using precise grain size analysis and the model of Kranck et al. (1996a,b), it is possible to break down a sediment into the three major components from which it was formed: material deposited as flocs, material deposited as single grains from suspension, and material carried under higher energy conditions. With this method, both the amount of material deposited in a flocculated state and the maximum size, or floc limit, of the particles composing the floc can be determined. Changes in floc limit indicate changes in the aggregation dynamics of the system. As most trace metals and many other contaminants associate closely with the fine particle fraction of sediments, it is important to determine both the areal distribution and reworking history of the floc settled portion of a sediment. This paper discusses the application of the method to coastal inlets in Atlantic Canada and examines the relationship between proportion of floc-settled material and trace metal concentrations. Disaggregated inorganic grain size distributions are also used to illustrate changes in the aggregation dynamics in areas of intense aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gibbs, R.J., Matthews, M.D. and Link, D.A.: 1971,J. Sed. Petrol. 41, 7–18.

    Google Scholar 

  • Hargrave, B.T.: 1994,Can. Tech. Rep. Fish. Aquat. Sci.,1949, 79–91.

    Google Scholar 

  • Hargrave, B.T.. Phillips. G.A.. Doucette. L.I., White. M.J.. Milligan, T.G.. Wildish D.J. and Cranston. R.E.: 1995.Can. Tech. Rep. Fish. Aquat. Sci. 2062, v + 159p.

  • Hill, P. S. and Nowell, A. R. M.. 1995,J. Geophys. Res.,100(C11): 22,749–22,763.

    Article  Google Scholar 

  • Honeyman, B.D. and Santschi, P.H.: 1989,J. Mar. Res. 47, 951–992.

    Article  CAS  Google Scholar 

  • Jackson, G.A., 1995,Deep Sea Res. II.42, 1, 159–184.

    Article  Google Scholar 

  • Kepkay. P.E., Niven, S.E.H. and Milligan, T.G.: 1993,Mar. Ecol. Prog. Ser. 100, 233–244.

    CAS  Google Scholar 

  • Kranck, K., 1980,Can. J. Earth Sci. 17, 1517–1526.

    Google Scholar 

  • Kranck, K., 1993,Arch. Hydrobiol/Suppl. 75, 299–309.

    Google Scholar 

  • Kranck, K. and Milligan, T.: 1980,Mar. Ecol. Prog. Ser. 3, 19–24.

    Google Scholar 

  • Kranck, K. and Milligan, T.: 1983.Mitteilungen aus dent Geologisch-Paleontologisch Institut der Universitat Hamburg,52, Degens E.T. (ed).

  • Kranck, K. and Milligan, T.G.: 1985,Geomarine Letters,5, 61–66.

    Google Scholar 

  • Kranck, K. and Milligan, T.G.: 1989.Can. Tech. Rep. Hydrogr. Ocean Sci.,112: iv. 61 pp.

    Google Scholar 

  • Kranck, K., Smith, P.C. and Milligan, T.G.: 1996a.Sedimentology,43, 589–596.

    Article  Google Scholar 

  • Kranck, K., Smith, P.C. and Milligan, T.G.: 1996b,Sedimentology,43, 589–596.

    Article  Google Scholar 

  • Loring, D.H.: 1988Can. Bull. Fish. Aquat. Sci.,220, 99–122.

    Google Scholar 

  • Loring, D.H. and Nota, D.J.G.: 1968.J. Fish. Res. Board Can.,182: 147 pp

    Google Scholar 

  • Loring, D.H. and Rantala, R.T.T.: 1992,Earth Sci. Rev.,32, 235–283.

    Article  CAS  Google Scholar 

  • Loring, D.H., Rantala, R.T.T. and Milligan, T.G.: 1996.Can. Tech. Rep. Fish. Aquat. Sci. 2111: vii+268pp.

    Google Scholar 

  • Milligan, T.G. and Kranck,: 1991.Theory. Methods and Applications of Particle Size Analysis. Cambridge University Press, New York, 109–118.

    Google Scholar 

  • Muhle, K.: 1993,Coagulation and Flocculation. theory and application. Lib. Congress Surfactant Sci. Ser.,47, 355–390.

    Google Scholar 

  • Muller, F.L.L.: 1996, Mar. Chem.,52, 245–268.

    Article  CAS  Google Scholar 

  • Muschenheim, D.K., Kepkay. P.E. and Kranck, K.: 1989,Neth. J. of Sea Res.,23(3), 283–292.

    Article  Google Scholar 

  • Niven, S.E.H.. Kepkay, P.E. and Boraie, A.: 1995,Deep Sea Res. II,42, 1, 257–273.

    Article  CAS  Google Scholar 

  • Schell, T. M: 1996,Proximal to distal trends of the Floccculation limit of fine-grained turbidites. Dalhousie University MSc. thesis, 178pp.

  • Spicer, P.T. and Pratsinis, S.E.: 1996,Water Res.,50, 5, 1049–1056.

    Article  Google Scholar 

  • Rantala, R.T.T. and Loring, D.H.: 1989.Anal. Chem.,220, 263–267.

    CAS  Google Scholar 

  • Tambo, N. and Hozumi, H.: 1979,Water Res.,13, 421–427.

    Article  CAS  Google Scholar 

  • Trites. R.W. and Petrie, L.: 1995,Can Tech. Rep. Hydrogr. Ocean Sci.,163: 53pp.

  • van Leussen, W.: 1988,Physical Processes in Estuaries. Springer Verlag, Berlin, New York, 404–426.

    Google Scholar 

  • Zwolsman, J.J.G., van Eck, G.T.M. and Burger, G.: 1996.Estuaine, Coastal Shelf Sci.,43, 55–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milligan, T.G., Loring, D.H. The effect of flocculation on the size distributions of bottom sediment in coastal inlets: Implications for contaminant transport. Water Air Soil Pollut 99, 33–42 (1997). https://doi.org/10.1007/BF02406842

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02406842

Keywords

Navigation