Skip to main content
Log in

Effect of moisture stress on metabolic products and ions accumulation

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Estimations of the metabolic products and accumulated ions were made at the different stages of development of a number of native and introduced plant species grown under different conditions of moisture stress corresponding to different levels of water supply equivalent to 125, 200, 275 and 350 mm.

The increase in moisture stress favours the increase in total available carbohydrates and total nitrogen. With deficiency in soil moisture the majority of accumulated ions (K, Na, Ca, Mg, and Cl) increases and a minority (P and Fe) decreases. The sum of total ions accumulated in the plant tissues increases with decrease in soil moisture and rise in moisture stress. This is accompanied by accumulation of more salts in the cell sap and the consequent rise in osmotic pressure.

The nutritive value as determined by total available carbohydrates, total nitrogen, Ca, Mg, and P contents is highly influenced by soil moisture conditions. Plants subjected to higher moisture tension are richer in total nitrogen, total available carbohydrates. calcium, and magnesium, and poorer in phosphorus content. The total nutritive value is not only determined by the percentage of these constituents but also by the dry matter production per plant, the latter is greatly suppressed with deficiency in soil moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W. E., McGreery, M. S., Morris, H. D. and Elkins, C. B., Protein, phosphorus, and potassium composition of Coastal bermuda-grass and Crimson clover. J. Range Management19, 301–305 (1966).

    Google Scholar 

  2. Association of Official Agricultural Chemists, Official Methods of Analysis. 9th Ed. The A.O.A.C., Washington, D.C., U.S.A. (1960).

  3. Baily, J. S., Spelman, A. F. and Gersten, B., Seasonal changes in the nutrients in the leaves of rubel blueberry bushes. Proc. Am. Soc. Hort. Sci.80, 327–330 (1962).

    Google Scholar 

  4. Ballinger, W. E. and Kushman, L. J., Factors affecting the mineral element content of leaves and fruits of Wollcott blue-berries. Proc. Am. Soc. Hort. Sci.88, 325–330 (1966).

    CAS  Google Scholar 

  5. Barnett, N. M. and Naylor, A. W., Amino acids and protien metabolism in Bermudagrass during water stress. Plant Physiol.41, 1220–1230 (1966).

    Google Scholar 

  6. Barrows, H. I. and Simpson, E. C., An EDTA method for direct determination of calcium and magnesium in soil and plant tissue. Soil Sci. Soc. Am. Proc.26, 443–454 (1962).

    Article  CAS  Google Scholar 

  7. Bennette, J. P., Iron in leaves. Minor Elements Evidence and Concepts on Functions, Deficiencies, and Excesses, p. 91–105. Williams and Williams Co. (1945).

  8. Ben-Zioni, A., Itai, C. and Vaadia, Y., Water and salt stresses, kinetin, and protein synthesis in tobacco I leaves. Plant Physiol.42, 361–365 (1967).

    PubMed  CAS  Google Scholar 

  9. Bernstein, L. and Ayers, A. D., Salt tolerance of fine varieties of carrots. Proc. Am. Soc. Hort. Sci.61, 360–366 (1953).

    CAS  Google Scholar 

  10. Chen, D., Kessler, B. and Monselise, S. P., Studies on water regime and nitrogen metabolism of Citrus seedlings grown under water stress. Plant Physiol.39, 379–386 (1964).

    PubMed  CAS  Google Scholar 

  11. Christensen, M. D. and Walker, D. R., Leaf analysis technique and survey results on sweet cherries in Utah, (U.S.A.). Proc. Am. Soc. Hort. Sci.85, 112–117 (1964).

    CAS  Google Scholar 

  12. Cook, C. W. and Harris, L. E., The nutritive content of the grazing sheep's diet on summer and winter ranges of Utah. Utah Agr. Expt. Sta. Bull.342 (1950).

  13. Cook, C. W. and Harris, L. E., The nutritive value of range forage as affected by vegetation site, and stage of maturity. Utah Agr. Expt. Sta. Bull.344 (1950).

  14. Coyne, D. P. and Serrano, J. L., Diurnal variations of soluble solids, carbohydrates, and respiration rate of drought tolerant and susceptible bean species and varieties. Proc. Am. Soc. Hort. Sci.83, 453–460 (1963).

    CAS  Google Scholar 

  15. Eaton, F. M. and Ergle, D. R., Carbohydrate accumulation in the cotton plant at low moisture levels. Plant Physiol23, 169–187 (1948).

    PubMed  CAS  Google Scholar 

  16. Eaton, F. M. and Ergle, D. R., Fibre properties and carbohydrate and nitrogen levels of cotton plant as influenced by moisture supply and fertilizers. Plant Physiol.27, 541–562 (1953).

    Google Scholar 

  17. Evenari, M., Plant physiology and arid-zone research. Paris Symposium on the Problems of the Arid Zone, p. 175–195. UNESCO (1962).

  18. Granfield, C. O., Food reserves and their translocation to the crown buds as related to cold and drought resistance in Alfalfa. J. Agr. Research67, 33–47 (1943).

    Google Scholar 

  19. Hagan, R. M., Peterson, M. L., Upchurch, R. P. and Jones, L. G., Relationship of soil moisture. stress to different aspects of growth in ladino-clover. Soil Sci. Soc. Am. Proc.21, 360–365 (1957).

    Article  CAS  Google Scholar 

  20. Henckel, P. A., Physiology of plants under drought. Ann. Rev. Plant Physiol.15, 363–386 (1964).

    Article  CAS  Google Scholar 

  21. Jackson, W. A. and Thomas, G. W., Effect of KCl and Dolometic Limestone on growth and ion uptake of sweet potato. Soil Sci.89, 347–352 (1960).

    CAS  Google Scholar 

  22. Johnson, C. M. and Ulrich, A., Analytical methods for use in plant analysis. U.S. Dept. Agr. Calif. Univ. Agr. Inform. Bull.766 (1959).

  23. Johnston, A. and Bezeau, L. M., Chemical composition of range forage plants of theFestuca-Scabrella association. Can. J. Plant Sci.42, 105–115 (1962).

    CAS  Google Scholar 

  24. Julander, O., Drought resistance in range and pasture grasses. Plant Physiol.20, 573–599 (1945).

    PubMed  CAS  Google Scholar 

  25. Kamstra, L. D., Stanley, R. W. and Ishizaki, S. M., Seasonal and growth period changes of some nutritive components of Kuyu-grass (Pennisetum clandestinum). J. Range Management19, 288–291 (1966).

    CAS  Google Scholar 

  26. Killmer, V. J., Bennett, O. L., Stahly, V. F. and Timmons, D. R., Yields and mineral composition of eight forage species. Agron. J.52, 282–285 (1960).

    Article  Google Scholar 

  27. Kozlowski, T. T., Water Metabolism in Plants. Harper Row Co. Inc., New York (1964).

    Google Scholar 

  28. Kramer, P. J. and Kozlowski, T. T., Physiology of trees. McGraw-Hill Book Co. Inc. New York (1960).

    Google Scholar 

  29. Magness, J. R., Degman, E. S. and Furr, J. R., Soil moisture and irrigation investigations in eastern apple orchards. U.S. Dept. Agr. Tech. Bul.491 (1935).

  30. Mc.Lean, A. and Tisdale, E. W., Chemical composition of native forage plants in British Columbia in relation to grazing practices. Can. J. Plant Sci.40, 405–423 (1960).

    CAS  Google Scholar 

  31. McLean, A., Nicholson, H. H. and Van Ryswyk, A. L., J. Range Management14, 235–240 (1961).

    Google Scholar 

  32. Oelberg, K., Factors affecting the nutritive value of range forage. J. Range Management9, 220–225 (1956).

    Google Scholar 

  33. Paech, K. and Tracey, M. V., Modern Methods of Plant Analysis, Vol.1. Springer-Verlag Berlin (1956).

    Google Scholar 

  34. Phillips, T. G., Determination of sugars in plant extracts. J. Biol. Chem.95, 735 (1932).

    CAS  Google Scholar 

  35. Richards, L. A., Diagnosis and Improvement of Saline and Alkali soils. U.S. Dept. Agr. Handbook60 (1954).

  36. Shaffer, P. A. and Somogyi, M., Copper-iodometric reagents for sugar determinations. J. Biol. Chem.96, 695 (1933).

    Google Scholar 

  37. Simonis, W., CO2-Assimilation and Stoff-producktion trocken gezogener Pflanzen. Planta (Berlin)35, 188–224 (1947).

    Article  Google Scholar 

  38. Simonis, W., Untersuchungen zum Durreeffekt. I. Morphologische Structur, Wasserhaushalt, Atmung und Photosynthese feucht und trocken gezogener Pflanzen. Planta (Berlin)40, 313–332 (1952).

    Article  CAS  Google Scholar 

  39. Singh, A., Plant Physiology. Asia Publishing House, Bombay, New Delhi, New York (1967).

    Google Scholar 

  40. Slatyer, R. O., Plant Water Relations. Academic Press, London (1967).

    Google Scholar 

  41. Smoliak, S., A comparison of ungrazed and lightly grazed Stipa Bouteloua prairie in south-eastern Alberta. Cand. J. Plant Sci.45, 270–275 (1965).

    Article  Google Scholar 

  42. Smoliak, S. and Bezeau, L. M., Chemical composition and in vitro digestibility of range forage plants of the Stipa-Bouteloua prairie. Cand. J. Plant Sci.47, 161–167 (1965).

    Google Scholar 

  43. Smith, D., Paulsen, G. M. and Raguse, C. A., Extraction of total available carbohydrates from grass and legume tissues. Plant Physiol.39, 960–962 (1964).

    Article  PubMed  CAS  Google Scholar 

  44. Snell, F. D. and Snell, C. T., Colourimetric Methods of Analysis. Vol.11, Van Nostrand CO. Inc. New York, London (1957).

    Google Scholar 

  45. Stocker, O., Physiological and morphological changes in plants due to water deficiency.In: Plant-Water Relationships in Arid and Semi-Arid Conditions. UNESCO15, 63–104 (1960).

    CAS  Google Scholar 

  46. Stocker, O., Contribution to the problem of drought resistance of plants. Ind. J. Plant Physiol.4, 87–102 (1960).

    Google Scholar 

  47. Streeter, C. L., Burslaff, D. F., Clanton, D. C. and Rittenhouse, L. R., Effect of stage of maturity, method of storage and storage time on nutritive value of Sanhills Upland hay. J. Range Management19, 55–59 (1966).

    Google Scholar 

  48. Sullivan, J. T., Evaluation of forage crops by chemical analysis Agron. J.54, 511–515 (1962).

    Google Scholar 

  49. Sullivan, J. T., Philips, T. G., Loughlin, M. E. and Sprague, V. G., Chemical composition of some forage grasses. II — Successive cuttings during the growing season. Agron. J.48, 11–14 (1956).

    Article  CAS  Google Scholar 

  50. Swift, R. W. and Sullivan, E. F., Composition and nutritive value of forages.In: Forages, 2nd Ed. by Hanges, H. D., M. E. Heath, and D. S. Metcalfe, pp. 42–52 (1962).

  51. Tadros, T. M. and Ibrahim, R. K., Influence of drought on some metabolic changes inPlantago albicans L. grown in two soil types. Bull. Fac. Sci. Alex. Univ.,3, 125–150 (1960).

    Google Scholar 

  52. Woodham, D. H. and Kozlowski, T. T., Effect of soil moisture stress on carbohydrate development and growth in plants. Am. J. Botany41, 316–320 (1954).

    Article  Google Scholar 

  53. Yeun, S. H. and Polland, H. G., Determination of total phosphords in plants by the 1, 2, 4, amino-naphthol-sulphonic acid method. J. Food and Agr. Sci.21, 36–38 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel Rahman, A.A., Shalaby, A.F. & El Monayeri, M.O. Effect of moisture stress on metabolic products and ions accumulation. Plant Soil 34, 65–90 (1971). https://doi.org/10.1007/BF01372762

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01372762

Keywords

Navigation