Skip to main content
Log in

Conditions for sympatric speciation: A diploid model incorporating habitat fidelity and non-habitat assortative mating

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Three types of genes have been proposed to promote sympatric speciation: habitat preference genes, assortative mating genes and habitat-based fitness genes. Previous computer models have analysed these genes separately or in pairs. In this paper we describe a multilocus model in which genes of all three types are considered simultaneously. Our computer simulations show that speciation occurs in complete sympatry under a broad range of conditions. The process includes an initial diversification phase during which a slight amount of divergence occurs, a quasi-equilibrium phase of stasis during which little or no detectable divergence occurs and a completion phase during which divergence is dramatic and gene flow between diverging habitat morphs is rapidly eliminated. Habitat preference genes and habitat-specific fitness genes become associated when assortative mating occurs due to habitat preference, but interbreeding between individuals adapted to different habitats occurs unless habitat preference is almost error free. However, ‘nonhabitat assortative mating’, when coupled with habitat preference can eliminate this interbreeding. Even when several loci contribute to the probability of expression of non-habitat assortative mating and the contributions of individual loci are small, gene flow between diverging portions of the population can terminate within less than 1000 generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, N.H. and Charlesworth, B. (1984) Genetic revolutions, founder effects, and speciation.Ann. Rev. Ecol. Syst. 15 133–64.

    Google Scholar 

  • Barton, N.H., Jones, J.S. and Mallet, J. (1988) No barriers to speciation.Nature 336 13–14.

    Google Scholar 

  • Bush, G.L. (1969) Sympatric host race formation and speciation in frugivorous flies of the genusRhagoletis.Evolution 23 237–51.

    Google Scholar 

  • Bush, G.L. (1975) Sympatric speciation in phytophagous parasitic insects. InEvolutionary strategies of parasitic insects (P.W. Price, ed.), pp. 187–206. Plenum, London.

    Google Scholar 

  • Bush, G.L. (1982) What do we really know about speciation? InPerspectives on evolution (R. Milkman, ed.), pp. 119–28. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Bush, G.L. (1992) A reaffirmation of Santa Rosalia, or why are there so many kinds of small animals. InEvolutionary patterns and processes (D. Edwards and D.R. Lees, eds), pp. 229–49. Academic Press, New York.

    Google Scholar 

  • Bush, G.L. and Howard, D.J. (1986) Allopatric and non-allopatric speciation; assumptions and evidence. InEvolutionary processes and theory (S. Karlin and E. Nevo, eds), pp. 411–38. Academic Press, New York.

    Google Scholar 

  • Crawford, D.J., Stuessy, T.F., Haines, D.W., Cosner, M.B., Silva, O.M. and Lopez, P. (1992) Allozyme diversity within and divergence among four species of Robinsonia (Asteraceae: Senecioneae), a genus endemic to the Jan Fernandez Islands, Chile. American Journal of Botany79 962–6

    Google Scholar 

  • De Meeus, T., Michalakis, Y., Renaud, F. and Olivieri, I. (1993) Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: soft and hard selection models.Evol. Ecol. 7 175–98.

    Google Scholar 

  • Dickinson, H. and Antonovics, J. (1973) Theoretical considerations of sympatric divergence.Am. Nat. 107 256–74.

    Google Scholar 

  • Diehl, S.R. and Bush, G.L. (1989) The role of habitat preference in adaptation and speciation. InSpeciation and its consequences (D. Otte and J. Endler, eds), pp. 345–65. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Feder, J.L., Chilcote, C.A. and Bush, G.L. (1989) Are the apple maggot,Rhagoletis pomonella, and blueberry maggot,R. mendax, distinct species? Implications for sympatric speciation.Entomol. Exp. Appl. 51 113–23.

    Google Scholar 

  • Felsenstein, J. (1981) Scepticism towards Santa Rosalia, or why are there so few kinds of animals.Evolution 35 124–38.

    Google Scholar 

  • Fialkowski, K.R. (1988) Lottery of sympatric speciation computer model.J. Theor. Biol. 130 379–90.

    Google Scholar 

  • Fialkowski, K.R. (1992) Sympatric speciation: a simulation model of imperfect assortative mating.J. Theor. Biol. 157 9–30.

    Google Scholar 

  • Futuyma, D. (1986)Evolutionary Biology, 2nd edn. Sinauer Associates, Sunderland, MD.

    Google Scholar 

  • Futuyma, D. and Mayer, G.C. (1980) Non-allopatric speciation in animals.Syst. Zool. 29 254–71.

    Google Scholar 

  • Gibbons, R.H. (1979) A model for sympatric speciation inMegarhyssa (Hymenoptera: Ichneumonidae): competitive speciation.Am. Nat. 114 719–41.

    Google Scholar 

  • Grant, P.R. (1986)Ecology and Evolution of Darwin's Finches. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Grula, J.W. and Taylor, O.R., Jr (1979) The inheritance of pheromone production in the sulphur butterfliesColias eurytheme andC. philodice.Heredity 42 359–71.

    Google Scholar 

  • Haldane, J.B.S. (1930) A note on Fisher's theory of the origin of dominance.Am. Nat. 64 87–90.

    Google Scholar 

  • Heatwole, H. and Davis, D.M. (1965) Ecology of three species of parasitic insects of the genusMegarhyssa (Hymenoptera: Ichneumonidae).Ecology 46 140–50.

    Google Scholar 

  • Hutchinson, G.E. (1968) When are species necessary? InPopulation biology and evolution (R.C. Lewontin, ed.) pp. 177–86. Syracuse University Press, Syracuse, NY.

    Google Scholar 

  • Kondrashov, A.S. (1983a) Multilocus model of sympatric speciation. I. One character.Theor. Pop. Biol. 24 121–35.

    Google Scholar 

  • Kondrashov, A.S. (1983b) Multilocus model of sympatric speciation. II. Two characters.Theor. Pop. Biol. 24 121–35.

    Google Scholar 

  • Kondrashov, A.S. (1986) Multilocus model of sympatric speciation. III. Computer simulations.Theor. Pop. Biol. 29 1–15.

    Google Scholar 

  • Kondrashov, A.S. and Mina, M.V. (1986) Sympatric speciation: when is it possible?Biol. J. Linn. Soc. 27 201–23.

    Google Scholar 

  • Lack, D. (1947)Darwin's Finches. Cambridge University Press, Cambridge.

    Google Scholar 

  • Levene, H. (1953) Genetic equilibrium when more than one ecological niche is available.Am. Nat. 87 331–33.

    Google Scholar 

  • Liberman, U. and Feldman, M.W. (1989) The reduction principle for genetic modifiers of the migration rate. InMathematical evolutionary theory (M.W. Feldman, ed.), pp. 111–44. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Maynard Smith, J. (1962) Disruptive selection, polymorphism and sympatric speciation.Nature 195 60–2.

    Google Scholar 

  • Maynard Smith, J. (1965) Mr. J. Maynard Smith (comments).Proc. R. Entomol. Soc. London 30 22–3.

    Google Scholar 

  • Maynard Smith, J. (1966) Sympatric speciation.Am. Nat. 100 637–50.

    Google Scholar 

  • Mayr, E. (1963)Animal Species and Evolution. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Moody, M. (1981) Polymorphism with selection and genotype-dependent migration.J. Math. Biol. 11 245–67.

    Google Scholar 

  • Murray, M.G. (1990) Comparative morphology and mate competition of flightless male fig wasps.Anim. Behav. 39 434–43.

    Google Scholar 

  • Nagylaki, T. and Moody, M. (1980) Diffusion model for genotype-dependent migration.Proc. Natl Acad. Sci. USA 77 4842–6.

    Google Scholar 

  • Nei, M. and Li, W.H. (1973) Linkage disequilibrium in subdivided populations.Genetics 75 213–19.

    Google Scholar 

  • Paterson, H.E.H. (1981) The continuing search for the unknown and the unknowable: a critique of contemporary ideas on speciation.South Africa J. Sci. 77 119–33.

    Google Scholar 

  • Pimentel, D., Smith, G.J.C. and Soans, J.S. (1967) A population model of sympatric speciation.Am. Nat. 101 493–504.

    Google Scholar 

  • Rausher, M.D. (1984) The evolution of habitat preference in subdivided populations.Evolution 38 596–608.

    Google Scholar 

  • Rice, W.R. (1984) Disruptive selection on habitat preference and the evolution of reproductive isolation: a simulation study.Evolution 38 1251–60.

    Google Scholar 

  • Rice, W.R. (1987) Selection via habitat specialization: the evolution of reproductive isolation as a correlated character.Evol. Ecol. 1 301–14.

    Google Scholar 

  • Rice, W.R. and Salt, G.W. (1990) The evolution of reproductive isolation as a correlated character under sympatric conditions: tall evidence.Evolution 44 1140–52.

    Google Scholar 

  • R'Kha, S., Capy, P. and David, J.R. (1991) Host-plant specialization in theDrosophila melanogaster species complex: a physiological, behavioral, and genetical analysis.Proc. Nat Acad. Sci. USA 88 1835–9.

    Google Scholar 

  • Roelofs, W.R., Glover, T., Tang, X., Sreng, I., Robbins, D., Eckenrode, C., Lofstedt, G., Hannon, B.S. and Bengtsson, B.O. (1987) Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes.Proc. Natl Acad. Sci. USA 84 7585–9.

    Google Scholar 

  • Rosenzweig, M.L. (1978) Competitive speciation.Biol.J. Linn. Soc. 10 275–89.

    Google Scholar 

  • Seger, J. (1985) Intraspecific resource competition as a cause of sympatric speciation. InEvolution (P.J. Greenwood, P.H. Harveyand and M. Slatkin, eds), pp. 43–53. Cambridge University Press, Cambridge.

    Google Scholar 

  • Shaw, R.G. and Platenkamp, G.A.J. (1993) Quantitative genetics of response to competitors inNemophila menziesii: a greenhouse study.Evolution 47 801–12.

    Google Scholar 

  • Slatkin, M. (1982) Pleiotropy and parapatric speciation.Evolution 36 263–70.

    Google Scholar 

  • Smouse, P.E. and Neel, J.V. (1977) Multivariate analysis of gametic disequilibrium in the Yanomama.Genetics 85 733–52.

    Google Scholar 

  • Soans, A.B., Pimentel, D. and Soans, J.S. (1974) Evolution of reproductive isolation in allopatric and sympatric populations.Am. Nat. 108 117–24.

    Google Scholar 

  • Sved, J.A. and Ma, O. (1970) The evolution of dominance. InMathematical topics in population genetics (K. Kojima, ed.), pp. 289–316. Springer-Verlag, New York.

    Google Scholar 

  • Tauber, C.A. and Tauber, M.J. (1977) A genetic model for sympatric speciation through habitat diversification and seasonal isolation.Nature 268 702–5.

    Google Scholar 

  • Tauber, C.A. and Tauber, M.J. (1989) Sympatric speciation in insects: perception and perspective. InSpeciation and its consequences (D. Otte and J. Endler, eds), pp. 307–343. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Taylor, O.R., Jr (1972) Random vs. non-random mating in the sulfur butterflies,Colias eurytheme andC. philodice (Lepidoptera, Pieridae).Evolution 26 344–56.

    Google Scholar 

  • Templeton, A.R. (1989) The meaning of species and speciation: a genetic perspective. InSpeciation and its consequences (D. Otte and J. Endler, eds), pp. 3–27. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Wade, M.J., Patterson, H., Chang, N. and Johnson, N.A. (1994) Postcopulatory, prezygotic isolation in flour beetles.Heredity 72 163–7.

    Google Scholar 

  • White, M.J.D. (1978)Modes of Speciation. W.H. Freeman, San Francisco.

    Google Scholar 

  • Wood, T.K. and Guttman, S.I. (1983)Enchenopa binotata complex: sympatric speciation?Science 220 310–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, P.A., Hoppensteadt, F.C., Smith, J.J. et al. Conditions for sympatric speciation: A diploid model incorporating habitat fidelity and non-habitat assortative mating. Evol Ecol 10, 187–205 (1996). https://doi.org/10.1007/BF01241784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01241784

Keywords

Navigation