Skip to main content
Log in

Regional impact analysis of climate change on natural and managed forests in the Federal State of Brandenburg, Germany

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A methodology for regional application of forest simulation models has been developed as part of an assessment of possible climate change impacts in the Federal state of Brandenburg (Germany). Here we report on the application of a forest gap model to analyse the impacts of climate change on species composition and productivity of natural and managed forests in Brandenburg using a statistical method for the development of climate scenarios. The forest model was linked to a GIS that includes soil and groundwater table maps, as well as gridded climate data with a resolution of 10 × 10 km and simulated a steady-state species composition which was classified into forest types based on the biomass distribution between species. Different climate scenarios were used to assess the sensitivity of species composition to climate change. The simulated forest distribution patterns for current climate were compared with a map of Potential Natural Vegetation (PNV) of Brandenburg.

In order to analyse the possible consequences of climate change on forest management, we used forest inventory data to initialize the model with representative forest stands. Simulation experiments with two different management strategies indicated how forest management could respond to the projected impacts of climate change. The combination of regional analysis of natural forest dynamics under climate change with simulation experiments for managed forests outlines possible trends for the forest resources. The implications of the results are discussed, emphasizing the regional differences in environmental risks and the adaptation potentials of forestry in Brandenburg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Botkin, Forest Dynamics: An Ecological Model (Oxford University Press, Oxford, 1993).

    Google Scholar 

  2. D.B. Botkin and R.A. Nisbet, Climatic Change 20 (1992) 87–111.

    Google Scholar 

  3. H. Bugmann, On the ecology of mountainous forests in a changing climate: A simulation study, Ph.D. thesis, ETH Zürich (1994).

  4. H.K.M. Bugmann, Ecology 77 (1996) 2055–2074.

    Google Scholar 

  5. G. Bürger, Climate Research 8 (1997) 183–194.

    Google Scholar 

  6. U. Cubasch, K. Hasselmann, H. Hock, E. Maier-Reimer, U. Mikolajewicz, B.D. Santer and R. Sausen, Climate Dynamics 8 (1992) 55–69.

    Google Scholar 

  7. M. Flechsig, SPRINT-S: A parallelization tool for experiments with simulation models, PIK Report 47, Potsdam Institute for Climate Impact Research, Potsdam (1998).

    Google Scholar 

  8. H. Flohn, Das Problem der Klimaänderung in Vergangenheit und Zukunft, Erträge der Forschung, Vol. 220 (1985).

  9. D. Gerold, Modellierung des Wachstums von Waldbeständen auf der Basis der Durchmesserstruktur, Diss. B, Technische Universität Dresden (1990).

  10. F.-W. Gerstengarbe and P.C. Werner, Z. Meteorol. 39 (1989) 224–226.

    Google Scholar 

  11. F.-W. Gerstengarbe and P.C. Werner, Meteorol. Zeitschrift N.F. 1 (1992) 285–289.

    Google Scholar 

  12. G. Glugla, Albrecht-Thaer-Archiv 13 (1969) 371–376.

    Google Scholar 

  13. R. Grote and F. Suckow, Forest Ecology and Management 112 (1998) 101–119.

    Google Scholar 

  14. D. Gyalistras, H. Von Storch, A. Fischlin and M. Beniston, Climate Research 4 (1994) 167–189.

    Google Scholar 

  15. A.J. Hansen, P.G. Risser and F. di Castri, in: Landscape Boundaries, eds. A.J. Hansen and F. di Castri (Springer, New York, 1992) p. 423.

    Google Scholar 

  16. IPCC, Climate Change 1995. Summary for Policymakers (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  17. R.E. Keane, P. Morgan and S.W. Running, FIRE-BGC — A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains, Research Paper, INT-RP-484, United States Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT (1996).

    Google Scholar 

  18. F. Kienast, Landscape Ecology 5 (1991) 225–238.

    Google Scholar 

  19. F. Kienast and N. Kuhn, Vegetation 79 (1989) 7–20.

    Google Scholar 

  20. R. Koitzsch, Z. Meteorol. 27 (1977) 302–306.

    Google Scholar 

  21. H. Kramer, Waldwachstumslehre (Paul Parey, Hamburg, 1988).

    Google Scholar 

  22. N. Kräuchi, Modelling forest succession as influenced by a changing environment, Ph.D. thesis No. 10479, Swiss Federal Institute of Technology, Zürich (1994).

    Google Scholar 

  23. H.-D. Krausch, Potentielle natürliche Vegetation. Ökologische Ressourcenplanung Berlin und Umland — Planungsgrundlagen, UBA Texte, FB 90051 (Umweltbundesamt, Berlin, 1993).

    Google Scholar 

  24. W. Lahmer, D.I. Müller-Wohlfeil, B. Pfützner and A. Becker, GIS-based hydrological modelling with the integrated modelling system ARC/EGMO, in: Int. Conf. on Regionalization in Hydrology, 10–14 March 1997, Braunschweig, Germany (1997) (accepted for IAHS publication).

  25. P. Lasch and M. Lindner, Journal of Biogeography 22 (1995) 485–492.

    Google Scholar 

  26. P. Lasch, F. Suckow, G. Bürger and M. Lindner, in: Past, Present and Future Climate Variability and Extremes: The Impacts on Forests, eds. M. Beniston and J. Innes (Springer, Heidelberg, 1998) p. 273.

    Google Scholar 

  27. R. Leemans and I.C. Prentice, FORSKA, A General Forest Succession Model (Department of Plant Ecology, Uppsala University, 1989).

  28. M. Lindner, Developing adaptive forest management strategies to cope with climatic change, Tree Physiology (in press).

  29. M. Lindner, H. Bugmann, P. Lasch, M. Flechsig and W. Cramer, Agriculture and Forest Meteorology 84 (1997) 123–135.

    Google Scholar 

  30. M. Lindner, P. Lasch and W. Cramer, Climatic Change 34 (1996) 191–199.

    Google Scholar 

  31. M. Lindner, R. Sievanen and H. Pretzsch, Forest Ecology and Management 95 (1997) 183–195.

    Google Scholar 

  32. P. Martin, Australian Journal of Botany 40 (1992) 717–735.

    Google Scholar 

  33. R.P. Neilson, Ecological Applications 3 (1993) 385–395.

    Google Scholar 

  34. C.D. Oliver and B.C. Larson, Forest Stand Dynamics (McGraw-Hill, New York, 1990).

    Google Scholar 

  35. I.C. Prentice, M.T. Sykes and W. Cramer, Ecological Modelling 65 (1993) 51–70.

    Google Scholar 

  36. A.M. Solomon, Oecologia 68 (1986) 567–579.

    Google Scholar 

  37. M. Stock and F. Toth, eds., Mögliche Auswirkungen von Klimaänderungen auf das Land Brandenburg (Potsdam Institute for Climate Impact Research, Potsdam, 1996).

    Google Scholar 

  38. R. Tüxen, Angewandte Pflanzensoziologie 13 (1956) 5–42.

    Google Scholar 

  39. K. Weise and U. Wendling, Archiv für Acker-und Pflanzenbau und Bodenkunde 18 (1974) 145–154.

    Google Scholar 

  40. G. Wenk and D. Gerold, in: Conference on Effects of Environmental Factors on Tree and Stand Growth (Berggießhübel/Dresden, IUFRO S4.0, 1996).

    Google Scholar 

  41. P.C. Werner and F.-W. Gerstengarbe, Climate Research 8 (1997) 171–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasch, P., Lindner, M., Ebert, B. et al. Regional impact analysis of climate change on natural and managed forests in the Federal State of Brandenburg, Germany. Environmental Modeling & Assessment 4, 273–286 (1999). https://doi.org/10.1023/A:1019024619886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019024619886

Navigation