Skip to main content
Log in

Accounting for the missing carbon-sink with the CO2-fertilization effect

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A terrestrial-biosphere carbon-sink has been included in global carbon-cycle models in order to reproduce past atmospheric CO2, 13C and 14C concentrations. The sink is of large enough magnitude that its effect on projections of future CO2 levels should not be ignored. However, the cause and mechanism of this sink are not well understood, contributing to uncertainty of projections. The estimated magnitude of the biospheric sink is examined with the aid of a global carbon-cycle model. For CO2 emissions scenarios, model estimates are made of the resulting atmospheric CO2 concentration. Next, the response of this model to CO2-emission impulses is broken down to give the fractions of the impulse which reside in the atmosphere, oceans, and terrestrial biosphere - all as a perturbation to background atmospheric CO2 concentration time-profiles that correspond to different emission scenarios. For a biospheric sink driven by the CO2-fertilization effect, we find that the biospheric fraction reaches a maximum of roughly 30% about 50 years after the impulse, which is of the same size as the oceanic fraction at that time. The dependence of these results on emission scenario and the year of the impulse are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacastow, R. and Keeling, C. D.: 1973, ‘Atmospheric Carbon Dioxide and Radiocarbon on the Natural Carbon Cycle’, in Woodwell, G. M. and Pecan, E. V. (eds.), Carbon and the Biosphere, U.S. Atomic Energy Commission, pp. 86–135.

  • Bazzaz, F. A. and Fajer, E. D.: 1992, ‘Plant Life in a CO2-Rich World’, Sci. Am. 264, 68–74.

    Google Scholar 

  • Boden, T. A., Sepanski, R. J., and Stoss, F. W.: 1991, ‘Trends 91: A Compendium of Data on Global Change’, Oak Ridge Natl. Lab, Oak Ridge, USA, ORNL/CDIAC-46.

    Google Scholar 

  • Broecker, W. S. and Peng, T. H.: 1993, ‘Evaluation of the 13C Constraint on the Uptake of Fossil Fuel CO2 by the Ocean’, Global Biogeochem. Cycles 7, 619–626.

    Google Scholar 

  • Carlyle, J. C. and Than, U. B.: 1988, ‘Abiotic Controls of Soil Respiration Beneath an Eighteen-Year-Old Pinus Radiate Stand in South-Eastern Australia’, J. Ecol. 76, 654–662.

    Google Scholar 

  • Cias, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R.'J.: 1995, ‘A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C ratio of atmospheric CO2’, Science 269, 1098–1102.

    Google Scholar 

  • Dai, A. and Fung, I. Y.: 1993, ‘Can Climate Variability Contribute to the “Missing” CO2 Sink?’, Global Biogeochem. Cycles 7, 599–609.

    Google Scholar 

  • Dixon, R. K., Brown, S. A., Houghton, R. A., Solomon, A. M., Trexler, M. C., and Wisniewski, J.: 1994, ‘Carbon Pools and Flux of Global Forest Ecosystems’, Science 263, 185–190.

    Google Scholar 

  • Emanuel, W. R., Killough, G. G., Post, W. M., and Shugart, H. H.: 1984, ‘Modeling Terrestrial Ecosystems in the Global Carbon Cycle with Shifts in Carbon Storage Capacity by Land-Use Change’, Ecology 65, 970–983.

    Google Scholar 

  • Enting, I. G. and Pearman, G. I.: 1987, ‘Description of a One-Dimensional Carbon Cycle Model Calibrated by the Techniques of Constrained Inversion’, Tellus 39B, 459–476.

    Google Scholar 

  • Enting, I. G., Wigley, T. M. L., and Heimann, M. (eds.): 1994, Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses, CSIRO Division of Atmospheric Research Technical Paper No. 31, CSIRO, Australia, 120 pp.

    Google Scholar 

  • Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., and Vera, R. R.: 1994, ‘Carbon Storage by Introduced Deep-Rooted Grasses in the South American Savannas’, Nature 371, 236–238.

    Google Scholar 

  • Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B.: 1986, ‘Ice Core Record of the 13C/12C Ratio of Atmospheric Carbon Dioxide in the Past Two Centuries’, Nature 324, 237–238.

    Google Scholar 

  • Galloway, J. N., Schlesinger, W. H., Levy II, H., Michaels, A., and Schnoor, J. L.: 1995, ‘Nitrogen Fixation: Anthropogenic Enhancement-Environmental Response’, Global Biogeochem. Cycles 9, 235–252.

    Google Scholar 

  • Gates, D. M.: 1985, ‘Global Biospheric Response to Increasing Atmospheric Carbon Dioxide Concentration’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation, U.S. Dept. Energy, DOE/ER-0238, Washington DC, pp. 171–184.

    Google Scholar 

  • Haraden, J.: 1993, ‘An Updated Shadow Price for CO2’, Energy Int. J. 18, 303–307.

    Google Scholar 

  • Harvey, L. D. D.: 1989a, ‘Effect of Model Structure on the Response of Terrestrial Biosphere Models to CO2 and Temperature Increases’, Global Biogeochem. Cycles 3, 137–153.

    Google Scholar 

  • Harvey, L. D. D.: 1989b, ‘Managing Atmospheric CO2’, Climatic Change 15, 343–381.

    Google Scholar 

  • Harvey, L. D. D. and Schneider, S. H.: 1985, ‘Transient Climate Response to External Forcing on 100–104 Year Time Scales, Part I. Experiments with Globally Averaged Coupled Atmosphere and Ocean Energy Balance Models’, J. Geophys. Res. 90, 2191–2205.

    Google Scholar 

  • Hoffert, M. I., Callegari, A. J., and Hseih, C.-T.: 1981, ‘A Box-Diffusion Carbon Cycle Model with Upwelling, Polar Bottom Water Formation and a Marine Biosphere’, in Bolin, B. (ed.), Carbon Cycle Modeling, SCOPE 16, Wiley, New York, pp. 287–305.

    Google Scholar 

  • Houghton, J. T. et al. (eds.): 1996, The IPCC Second Scientific Assessment Report, Cambridge University Press, Cambridge.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990, Climate Change, The IPCC Scientific Assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hudson, R. J. M., Gherini, S. A., and Goldstein, R. A.: 1994, ‘Modeling the Global Carbon Cycle: Nitrogen Fertilization of the Terrestrial Biosphere and the “Missing” CO2 Sink’, Global Biogeochem. Cycles 8, 307–333.

    Google Scholar 

  • Jain, A. K., Kheshgi, H. S., Caldeira, K., Hoffert, M. I., and Wuebbles, D. J.: 1994a, ‘Evaluation of δ13C of Atmospheric Carbon Dioxide with a Schematic Carbon Cycle Model’, Amer. Geophys. Union Fall Meeting, EOS Suppl. 75, 152–153.

    Google Scholar 

  • Jain, A. K., Kheshgi, H. S., and Wuebbles, D. J.: 1994b, ‘Integrated Science Model for Assessment of Climate Change’, Lawrence Livermore National Laboratory, UCRL-JC-116526.

  • Jain, A. K., Kheshgi, H. S., Hoffert, M. I., and Wuebbles, D. J.: 1995a, ‘Distribution of Radiocarbon as a Test of Global Carbon Cycle Models’, Global Biogeochem. Cycles 9, 153–166.

    Google Scholar 

  • Jain, A. K., Wuebbles, D. J., and Kheshgi, H. S.: 1995b, ‘Can We Balance the Atmospheric Budget of Bomb-Produced Radiocarbon?’, EOS Suppl 76, S77.

    Google Scholar 

  • Keeling, C. D. and Whorf, T.: 1993, ‘Trends in Atmospheric CO2 Since the Eruption of Pinatubo in 1991’, in 4th Int. CO 2 Conf., World Meteorological Organization, Carquiranne, pp. 67–68.

    Google Scholar 

  • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H.: 1989a, ‘A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds, 1. Analysis of Observational Data’, in Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and Western Americas, Am. Geophys. Union, Washington, DC, pp. 165–236.

    Google Scholar 

  • Keeling, C. D., Piper, S. C., and Heimann, M.: 1989b, ‘A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds, 4. Mean Annual Gradients and Interannual Variations’, in Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and Western Americas, Am. Geophys. Union, Washington, DC, pp. 305–363.

    Google Scholar 

  • Kheshgi, H. S. and White, B. S.: 1995 ‘Modelling Ocean Carbon Cycle with a Nonlinear Convolution Model’, Tellus, in press.

  • Kheshgi, H. S., Jain, A. K., and Wuebbles, D. J.: 1995, ‘Uncertainty in the Global Carbon Budget Derived from Isotopic Constraints’, Am. Geophys. Union Fall Meeting, EOS Suppl. 76, F83.

    Google Scholar 

  • Kohlmaier, G. H., Brohl, H., Sire, E. O., Piochal, M., and Revelle, R.: 1987, ‘Modelling Stimulation of Plants and Ecosystem Response to Present levels of Excess Atmospheric CO2’, Tellus 39B, 155–170.

    Google Scholar 

  • Leggett, J., Pepper, W. J., and Swart, R. J.: 1992, ‘Emission Scenarios for the IPCC: An Update’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, New York, pp. 69–96.

    Google Scholar 

  • Marowitch, J., Richter, C., and Hoddinott, J.: 1986, ‘The Influence of Plant Temperature on Photosynthesis and Translocation Rates in Bean and Soybean’, Can. J. Bot. 64, 2337–2342.

    Google Scholar 

  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climatic Change and Terrestrial Net Primary Production’, Nature 363, 234–240.

    Google Scholar 

  • Moore, B. and Bradswell, B. H.: 1994, ‘The Lifetime of Excess Atmospheric Carbon Dioxide’, Global Biogeochem. Cycles 8, 23–38.

    Google Scholar 

  • Nordhaus, W. D.: 1992, ‘An Optimal Transition Path for Controlling Greenhouse Gases’, Science 258, p. 1315.

    Google Scholar 

  • Owens, N. J. P., Galloway, J. N., and Duce, R. A.: 1992, ‘Episodic Atmospheric Nitrogen Deposition to Oligotrophic Oceans’, Nature 357, 397–399.

    Google Scholar 

  • Peng, T.-H., Takahashi, T., Broecker, W. S., and Olafsson, J.: 1987, ‘Seasonal Variability of Carbon Dioxide, Nutrients and Oxygen in the Northern North Atlantic Surface Water’, Tellus 39B, 439–458.

    Google Scholar 

  • Prentice, K. C. and Fung, I. Y.: 1990, ‘The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48–51.

    Google Scholar 

  • Reuss, J. O. and Innis, G. S.: 1977, ‘A Grassland Nitrogen Flow Simulation Model’, Ecology 58, 379–388.

    Google Scholar 

  • Rotmans, J. and Den Elzen, M. G. J.: 1993, ‘Modelling Feedback Mechanisms in the Carbon Cycle: Balancing the Carbon Budget’, Tellus 45B, 301–320.

    Google Scholar 

  • Saltzman, B. and Verbitsky, M.: 1994, ‘CO2 and Glacial Cycles’, Nature 367, 419.

    Google Scholar 

  • Sarmiento, J. L. and Sundquist, E. T.: 1992, ‘Revised Budget of the Oceanic Uptake of Anthropogenic Carbon Dioxide’, Nature 356, 589–593.

    Google Scholar 

  • Sarmiento, J. L., Le Quéré, C., and Pacala, S. W.: 1995, ‘Limiting Future Atmospheric Carbon Dioxide’, Global Biogeochem. Cycles. 9, 121–137.

    Google Scholar 

  • Schimel, D., Enting, I., Heimann, M., Wigley, T., Raynaud, D., Alves, D., and Siegenthaler, U.: 1994, ‘CO2 and the Carbon Cycle’, in Houghton, J. T. et al. (eds.), Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCCIS92 Emission Scenarios, Cambridge University Press, New York, pp. 35–71.

    Google Scholar 

  • Schindler, D. W. and Bayley, S. E.: 1993, ‘The Biosphere as an Increasing Sink for Atmospheric Carbon: Estimates from Increasing Nitrogen Deposition’, Global Biogeochem. Cycles 7, 717–733.

    Google Scholar 

  • Schlesinger, W.: 1991, Biogeochemistry: An Analysis of Global Change, Academic Press, San Diego, 443 pp.

    Google Scholar 

  • Siegenthaler, U. and Joos, F.: 1992, ‘Use of a Simple Model for Studying Oceanic Tracer Distributions and the Global Carbon Cycle’, Tellus 44B, 186–207.

    Google Scholar 

  • Siegenthaler, U. and Oeschger, H.: 1978, ‘Predicting Future Atmospheric Carbon Dioxide Levels’, Science 199, 388–395.

    Google Scholar 

  • Siegenthaler, U. and Oeschger, H.: 1987, ‘Biospheric CO2 Emissions During the Past 200 Years Reconstructed by Deconvolution of Ice Core Data’, Tellus 39B, 140–154.

    Google Scholar 

  • Sundquist, E. T.: 1986, ‘Geologic Analogs: Their Value and Limitations in Carbon Dioxide Research’, in Trabalka, J. R. and Reichle, D. E. (eds.), The Changing Carbon Cycle, Springer-Verlag, New York, pp. 371–402.

    Google Scholar 

  • Sundquist, E. T.: 1990, ‘Influence of Deep-Sea Benthic Processes on Atmospheric CO2’, Phil. Trans. Roy. Soc. A 331, 155–165.

    Google Scholar 

  • Tans, P. P., Berry, J. A., and Keeling, R. F.: 1993, ‘Oceanic 13C/12C Observations: A New Window on Ocean CO2 Uptake’, Global Biogeochem. Cycles 7, 353–368.

    Google Scholar 

  • Tans, P. P., Fung, I.Y. and Takahashi, T.: 1990, ‘Observational Constraints on the Global Atmospheric CO2 Budget’, Science 247, 1431–1438.

    Google Scholar 

  • Volk, T. and Liu, Z.: 1988, ‘Controls of CO2 Sources and Sinks in the Earth Scale Surface Ocean: Temperature and Nutrients’, Global Biogeochem. Cycles 2, 73–89.

    Google Scholar 

  • Wigley, T. M. L.: 1993, ‘Balancing the Carbon Budget. Implications for Projections of Future Carbon Dioxide Concentration Changes’, Tellus 45B, 409–425.

    Google Scholar 

  • Wuebbles, D. J., Jain, A. K., Patten, K. O., and Grant, K. E.: 1995, ‘Sensitivity of Direct Global Warming Potentials to Uncertainties’, Climatic Change 29, 265–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheshgi, H.S., Jain, A.K. & Wuebbles, D.J. Accounting for the missing carbon-sink with the CO2-fertilization effect. Climatic Change 33, 31–62 (1996). https://doi.org/10.1007/BF00140512

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140512

Keywords

Navigation