Skip to main content
Log in

Chemically Controlled Condensation of Polyoxovanadates

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A wide range of polyvanadates can be synthesized from aqueous solutions. Vanadium oxide gels V2O5 · nH2O are formed around the point of zero charge (pH ≈2). They exhibit a ribbon-like structure. Weak interactions between these ribbons lead to the formation of mesophases in which vanadium oxide gels or sols behave as nematic liquid crystals. Organic species can be easily intercalated between these oxide ribbons leading to the formation of hybrid nanocomposites made of alternative layers of organic and inorganic components. Hybrid materials can also be formed at a higher pH in the presence of large organic ions such as [N(CH3)4]+. They exhibit layered structures in which organic cations lie between polyoxovanadate planes. Such layered structures are not obtained in the presence of anions such as Cl− or I−. Cluster shell polyvanadates are then formed. They are made of negatively charged polyvanadate hollow spheres in which the negative anion is encapsulated. In this case the organic cations behave as counter ions for the formation of the hybrid crystalline network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Pope, Heteropoly and Isopolyoxometallates (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  2. J. Livage, Chem. Mater. 3, 578 (1991).

    Google Scholar 

  3. N. Gharbi, C. Sanchez, J. Livage, J. Lemerle, L. Nejem, and J. Lefebvre, Inorg. Chem. 21, 2758 (1982).

    Google Scholar 

  4. M.T. Pope and A. Müller, Angew. Chem. Int. Ed. Engl. 30, 34 (1991).

    Google Scholar 

  5. J. Livage, L. Bouhedja, C. Bonhomme, and M. Henry, Nanophase and nanocomposite materials II, Mat. Res. Soc. Symp. Proc. 457, 13 (1997).

    Google Scholar 

  6. J.J. Legendre and J. Livage, J. Colloids and Interface Sci. 94, 75 (1983).

    Google Scholar 

  7. T. Yao, Y. Oka, and N. Yamamoto, Mat. Res. Bull. 27, 669 (1992).

    Google Scholar 

  8. P. Aldebert, N. Baffier, N. Gharbi, and J. Livage, Mater. Res. Bull. 16, 669 (1981).

    Google Scholar 

  9. N. Baffier, P. Aldebert, J. Livage, and H.W. Haesslin, J. Colloids Interface Sci. 141, 467 (1991).

    Google Scholar 

  10. P. Davidson, A. Garreau, and J. Livage, Liq. Cryst. 16, 905 (1994).

    Google Scholar 

  11. P. Davidson, C. Bourgaux, L. Schoutteten, P. Sergot, C. Williams, and J. Livage, J. Phys. II France 5, 1577 (1995).

    Google Scholar 

  12. P.Y. Zavalij, M.S. Whittingham, and E.A. Boylan, Zeit. Krist. 211, 1 (1996).

    Google Scholar 

  13. A. Müller, E. Krickemeyer, M. Penk, H.J. Walberg, and H. Bögge, Angew. Chem. Int. Ed. Engl. 26, 1045 (1987).

    Google Scholar 

  14. G.K. Johnson and E.O. Schlemper, J. Amer. Chem. Soc. 100, 3645 (1978).

    Google Scholar 

  15. A. Müller, H. Reuter, and S. Dilinger, Angew. Chem. Int. Ed. Engl. 34, 2328 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livage, J., Bouhedja, L. & Bonhomme, C. Chemically Controlled Condensation of Polyoxovanadates. Journal of Sol-Gel Science and Technology 13, 65–70 (1998). https://doi.org/10.1023/A:1008647120784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008647120784

Navigation