Skip to main content
Log in

The role of vibrationally excited nitrogen in the ionosphere

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Theoretical and experimental aspects of the production, transformation, diffusion and loss of N2 in the upper atmosphere are considered. The N2-CO2 near-resonant system in theD andE regions is taken into account. We describe our understanding of the methods necessary to find the vibrational populations of N2 and CO2 (asymmetric mode of CO2). The calculations of the vibrational temperatures in theD, E, andF regions for the mid-latitude ionosphere and an aurora are presented. The connection between the excited species and the 4.26-μm radiation intensities is considered. The models for the rate coefficient of the reaction of O+ with N2 and the electron density decrease resulting from N2 in the F region are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albritton, D. L., Dotan, I., Lindinger, W., McFarland, M., Tellinhuisen, J. andFehsenfeld, F. C. (1977).Effects of ion speed distributions in flow-drift tube studies of ion-neutral reactions, J. Chem. Phys.66, 410–421.

    Google Scholar 

  • Fujimoto, G., Nitzan, A. andWeltz, E. (1976),Diffusion of vibrationally excited molecules. J. Chem. Phys.15, 217–225.

    Google Scholar 

  • Gilmore, F., Bones, E. andMcGowan, J. (1969),A review of atomic and molecular excitation mechanisms in nonequilibrium gases up to 2000 K. J. Quantitative Spectroscopy and Radiative Transfer9, 157–183.

    Google Scholar 

  • Gordiets, B. F., Osipov, A. I. andSchelepin, L. A. The kinetic processes in gases and molecular lasers. (Nauka, Moscow 1980).

    Google Scholar 

  • Haddad, G. N. (1984),Cross-sections for electron scattering in nitrogen. Aust. J. Phys.37, 487–494.

    Google Scholar 

  • Hedin, A. E. (1983),A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J. Geophys. Res.88, 10170–10188.

    Google Scholar 

  • Lee, J. H., Michael, J. V., Payne, W. A. andStief, L. J. (1978),Absolute rate of the reaction of N( 4 S) with NO from 196–400 K with DF-RF and FP-RF techniques. J. Chem. Phys.69, 3069–3073.

    Google Scholar 

  • McFarland, M., Albritton, D. L., Fehsenfeld, F. C., Ferguson, E. E., andSchmeltekopf, A. L. (1973),Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements, II. Positive ion reactions of N +,O +,and N 2 + with O 2 and O + with N 2 from thermal to 2 eV. J. Chem. Phys.59, 6620–6628.

    Google Scholar 

  • McNeal, R. J., Whitson, M. E. andCook, G. R. (1974),Temperature dependence of the quenching of vibrationally excited nitrogen by atomic oxygen. J. Geophys. Res.79, 1527–1531.

    Google Scholar 

  • Newton, G. P., Walker, J. C. G. andMeijer, P. H. E. (1974),Vibrationally excited nitrogen in stable auroral red arcs and its effect on ionospheric recombination. J. Geophys. Res.79, 3807–3818.

    Google Scholar 

  • Pavlov, A. V. (1981),The binary molecular diffusion coefficient of the neutral components of the upper atmospheres of earth. Mars and Venus (in Russian). Kosmicheskie issledovanij,19, 82–86.

    Google Scholar 

  • Pavlov, A. V. (1985),The method of calculation of the vibrationally excited nitrogen effect on the composition of the ionosphere (in Russian). Preprint N76(609), (IZMIRAN, Moscow, 1985).

    Google Scholar 

  • Pavlov, A. V. (1986),Rate coefficient for the reaction of O + with vibrationally excited N 2 in the ionosphere (in Russian). Geomagnetism and Aeronomy26, 152–154.

    Google Scholar 

  • Pavlov, A. V., (1986),The cooling rate of thermal electrons by vibrational excitation of N 2 (in Russian). Geomagnetism and Aeronomy26, 669–670.

    Google Scholar 

  • Pavlov, A. V. (1986),The vibrational relaxation of N 2,CO 2 at altitudes of the E and D regions (in Russian). Preprint N69(683), (IZMIRAN, Moscow, 1986).

    Google Scholar 

  • Richards, P. G. andTorr, D. G. (1985),Seasonal, diurnal, and solar cyclical variations of the limiting H + flux in the Earth's topside ionosphere. J. Geophys. Res.90, 5261–5268.

    Google Scholar 

  • Richards, P. G., Torr, D. G. andAbdou, W. A. (1986),Effects of vibrational enhancement of N 2 on the cooling rate of ionospheric thermal electrons. J. Geophys. Res.91, 304–310.

    Google Scholar 

  • Scharp, W. E., Rees, M. H. andStewart, A. I. (1979),Coordinated rocket and satellite measurements of an auroral event. 2. The rocket observations and analysis. J. Geophys. Res.84, 1977–1985.

    Google Scholar 

  • Schulz, G. J.,A review of vibrational excitation of molecules by electron impact at low energies, in principles of laser plasmas (ed. G. Berkefi) (John Wiley, New York (1976), pp., 33–76.

    Google Scholar 

  • Schmeltekopf, A. L., Ferguson, E. E. andFehsenfeld, F. C. (1968),Afterglow studies of the reactions He +;He(23S),and O + with vibrationally excited N 2. J. Chem. Phys.48, 2966–2973.

    Google Scholar 

  • Streit, G. E., Howard, C. J., Schmeltekopf, A. L., Davidson, J. A. andSchiff, H. I. (1976),Temperature dependence of O(1 D) rate constants for reactions with O 2,N 2,CO 2,O 3 and H 2 O. J. Chem. Phys.65, 4761–4764.

    Google Scholar 

  • St.-Maurice, J. P. andTorr, D. G. (1978),Nonthermal rate coefficients in the ionosphere: The reactions of O + with N 2,O 2 and NO. J. Geophys. Res.83, 969–977.

    Google Scholar 

  • Suchkov, A. Ph. andSchebeko, J. N. (1981),The kinetic of the vibrational exchange in the nonequilibrium nitrogen (in Russian). Chimija vasokich energij15, 279–283.

    Google Scholar 

  • Tohmatsu, T. andYamamoto, H. (1976),Radiative transfer of atomic and molecular resonant emissions in the upper atmosphere, 1. Basic theories in Doppler-broadening atmospheres. J. Geomagn. Geoelectr.28, 437–460.

    Google Scholar 

  • Torr, M. R., Torr, P. G. (1982),The role of metastable species in the thermosphere. Rev. Geophys. Space Phys.20, 91–144.

    Google Scholar 

  • Tully, J. C. (1974),Collision complex model for spin forbidden reactions: quenching of O(1 D) by N 2 J. Chem. Phys.61, 61–68.

    Google Scholar 

  • Van Zandt, T. E. andO'Malley, T. F. (1973),Rate coefficient for the reaction of O + with vibrationally excited N 2 J. Geophys. Res.28, 6818–6820.

    Google Scholar 

  • Viehland, L. A. andMason, E. A. (1977),Statistical-mechanical theory of gaseous ion-molecule reactions in an electrostatic field. J. Chem. Phys.66, 422–434.

    Google Scholar 

  • Waite, J. H., Nagy, A. F. andTorr, D. G. (1979),N 2 vibrational distribution in aurorae. Planet. Space Sci.27, 901–903.

    Google Scholar 

  • Vlaskov, V. A. andHenriksen, K. (1985),Vibrational temperature and excess vibrational energy of molecular nitrogen in the ground state derived from N 2 + emission bands in Aurora. Planet. Space Sci.33, 141–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A.V. The role of vibrationally excited nitrogen in the ionosphere. PAGEOPH 127, 529–544 (1988). https://doi.org/10.1007/BF00879824

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879824

Key words

Navigation