Skip to main content
Log in

The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review

  • Review
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Over the last few decades, there have been startling advances in our understanding of climate system and in modelling techniques. However, the skill of seasonal climate prediction is still not enough to meet the various needs from industrial and public sectors. Therefore, there are tremendous on-going efforts to improve the skill of climate prediction in the seasonal to interannual time scales. Since seasonal to interannual climate variabilities in Korea and East Asia are influenced by many internal and external factors including East Asian monsoon, tropical ocean variability, and other atmospheric low-frequency variabilities, comprehensive understanding of these factors are essential for skillful seasonal climate prediction for Korea and East Asia. Also, there are newly suggested external factors providing additional prediction skill like soil moisture, snow, Arctic sea ice, and stratospheric variability, and techniques to realize skills from underlying potential predictability. In this review paper, we describe current status of seasonal climate prediction and future prospect for improving climate prediction over Korea and East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J.-B., J.-H. Ryu, E.-H. Cho, J.-Y. Park, and S.-B. Ryoo, 1997: A Study on correlations between air-temperature and precipitation in Korea and SST over the Tropical Pacific. J. Korean Meteor. Soc., 33, 487–495 (in Korean with English abstract).

    Google Scholar 

  • Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    Article  Google Scholar 

  • Armstrong, R., 2001: Historical Soviet daily snow depth version 2 (HSDSD). National Snow and Ice Data Center.

    Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    Article  Google Scholar 

  • Badr, H., B. Zaitchik, and S. Guikema, 2014: Application of statistical models to the prediction of seasonal rainfall anomalies over the Sahel. J. Appl. Meteor. Clim., 53, 614–636, doi:10.1175/JAMC-D-13-0181.1.

    Article  Google Scholar 

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584, doi:10.1126/science.1063315.

    Article  Google Scholar 

  • Barnston, A., and S. J. Mason, 2011: Evaluation of IRI’s seasonal climate forecasts for the extreme 15% tails. Wea. Forecasting, 26, 545–554, doi:10.1175/WAF-D-10-05009.1.

    Article  Google Scholar 

  • Becker, E. J., H. van den Dool, and M. Peña, 2013: Short-term climate extremes: Prediction skill and predictability. J. Climate, 26, 512–531, doi:10.1175/JCLI-D-12-00177.1.

    Article  Google Scholar 

  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.-Ocean, 41, 1–14, doi:10.3137/ao.410101.

    Article  Google Scholar 

  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nature Clim. Change, 5, 849–859, doi:10.1038/nclimate2743.

    Article  Google Scholar 

  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 2805–2811, doi:10.1175/ JCLI3506.1.

    Article  Google Scholar 

  • Cha, E.-J., J.-G. Jhun, and H.-S. Chung, 1999: A study of characteristics of climate in South Korea for El Niño/La Niña years. J. Korean Meteor. Soc., 35, 98–117 (in Korean with English abstract).

    Google Scholar 

  • Chang, C.-P., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665–672, doi:10.1175/1520-0442(2004) 017<0665:OTRBWM>2.0.CO;2.

    Article  Google Scholar 

  • Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 1924–1944, doi:10.1175/MWR-D-11-00097.1.

    Article  Google Scholar 

  • Chowdary, J. S., S.-P. Xie, J.-Y. Lee, Y. Kosaka, and B. Wang, 2010: Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. J. Geophys. Res., 115, D22121, doi:10.1029/2010JD014595.

  • Cohen, J., and C. Fletcher, 2007: Improved skill of Northern Hemisphere winter surface temperature predictions based on land-atmosphere fall anomalies. J. Climate, 20, 4118–4132, doi:10.1175/JCLI4241.1.

    Article  Google Scholar 

  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009-2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, doi:10.1029/2010GL044256.

  • Cohen, J., and J. Jones, 2011: A new index for more accurate winter predictions. Geophys. Res. Lett., 38, L21701, doi:10.1029/2011GL-049626.

    Google Scholar 

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/ TN-464+STR, 226 pp.

    Google Scholar 

  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean-atmosphere model. Mon. Wea. Rev., 143, 4618–4630, doi:10. 1175/MWR-D-15-0097.1.

    Article  Google Scholar 

  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nature Clim. Change, 2, 491–496, doi:10.1038/nclimate1452.

    Google Scholar 

  • Day, J. J., E. Hawkins, and S. Tietsche, 2014: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 7566–7575, doi:10.1002/2014GL061694.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    Article  Google Scholar 

  • Delsole, T., X. Yang, and M. K. Tippett, 2013: Is unequal weighting significantly better than equal weighting for multi-model forecasting? Quart. J. Roy. Meteor. Soc., 139, 176–183, doi:10.1002/qj.1961.

    Article  Google Scholar 

  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 1845–1862, doi:10.1002/joc.631.

    Article  Google Scholar 

  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 2900–2922, doi:10.1175/ 1520-0442(2000)013<2900:UAGSWD>2.0.CO;2.

    Article  Google Scholar 

  • Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. Clim. Hydrometeorol., 4, 599–610, doi:10.1175/1525-7541(2003)004<0599:TROTLS>2.0.CO;2.

    Article  Google Scholar 

  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: The second Global Soil Wetness Project (GSWP-2): Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 1381–1397, doi:10.1175/BAMS-87-10-1381.

    Article  Google Scholar 

  • Doblas-Reyes, F. J., J. García-Serrano, F. Lienert, A. P. Biescas, and L. R. L. Rodrigues, 2013: Seasonal climate predictability and forecasting: status and prospects. WIREs Clim. Change, 4, 245–268, doi:10.1002/ wcc.217.

    Article  Google Scholar 

  • Douville, H., 2004: Relevance of soil moisture for seasonal atmospheric predictions: is it an initial value problem? Climate Dyn., 22, 429–446, doi:10.1007/s00382-003-0386-5.

    Article  Google Scholar 

  • Eade, R., E. Hamilton, D. M. Smith, R. J. Graham, and A. A. Scaife, 2012: Forecasting the number of extreme daily events out to a decade ahead. J. Geophys. Res., 117, D21110, doi:10.1029/2012JD018015.

    Article  Google Scholar 

  • Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11865–11877, doi: 10.1029/2000JD900051.

    Article  Google Scholar 

  • Fan, K., Y. Liu, and H. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New Approaches. Wea. Forecasting, 27, 1017–1030, doi:10.1175/WAF-D-11-00092.1.

    Article  Google Scholar 

  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL-029068.

    Article  Google Scholar 

  • Fletcher, C. G., S. C. Hardiman, P. J. Kushner, and J. Cohen, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 1208–1222, doi:10.1175/ 2008JCLI2505.1.

    Article  Google Scholar 

  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    Article  Google Scholar 

  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull. Amer. Meteor. Soc., 93, 845–859, doi:10.1175/BAMS-D-11-00145.1.

    Article  Google Scholar 

  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic oscillation. Geophys. Res. Lett., 28, 2073–2076, doi:10.1029/ 2000GL012311.

    Article  Google Scholar 

  • Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 1–6, doi:10.1002/grl.50729.

    Article  Google Scholar 

  • Hamilton, E., R. Eade, R. J. Graham, A. A. Scaife, D. M. Smith, A. Maidens, and C. MacLachlan, 2012: Forecasting the number of extreme daily events on seasonal timescales. J. Geophys. Res., 117, D03113, doi:10.1029/2011JD016541.

  • Hawkins, E., S. Tietsche, J. J. Day, N. Melia, K. Haines, and S. Keeley, 2016: Aspects of designing and evaluating seasonal-to-interannual Arctic sea-ice prediction systems. Quart. J. Roy. Meteor. Soc., 142, 672–683, doi:10.1002/qj.2643.

    Article  Google Scholar 

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008gl037079.

    Article  Google Scholar 

  • Hsieh, W., and B. Tang, 1998: Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Amer. Meteor. Soc., 79, 1855–1870, doi:10.1175/1520-0477(1998)079<1855: ANNMTP>2.0.CO;2.

    Article  Google Scholar 

  • Hu, Q., and S. Feng, 2010: Influence of the Arctic Oscillation on central United States summer rainfall. J. Geophys. Res., 115, D01102, doi:10. 1029/2009JD011805.

  • Jeong, H.-I., and Coauthors, 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475–493, doi:10.1007/ s00382-012-1359-3.

    Article  Google Scholar 

  • Jeong, H.-I., J.-B. Ahn, J.-Y. Lee, A. Alessandri, and H. H. Hendon, 2015: Interdecadal change of interannual variability and predictability of two types of ENSO. Climate Dyn., 44, 1073–1091, doi:10.1007/s00382-014-2127-3.

    Article  Google Scholar 

  • Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    Article  Google Scholar 

  • Jeong, H.-I., B. Kim, C. Ho, D. Chen, and G. Lim, 2006: Stratospheric origin of cold surge occurrence in East Asia. Geophys. Res. Lett., 33, L14710, doi:10.1029/2006GL026607.

  • Jeong, H.-I., C.-H. Ho, D. Chen, and T.-W. Park, 2008: Land surface initialization using an offline CLM3 simulation with the GSWP-2 forcing dataset and its impact on CAM3 simulations of the boreal summer climate. J. Hydrometeorol., 9, 1231–1248, doi:10.1175/2008-JHM941.1.

    Article  Google Scholar 

  • Jeong, H.-I., T. Ou, H. W. Linderholm, B.-M. Kim, S.-J. Kim, J.-S. Kug, and D. Chen, 2011: Recent recovery of the Siberian high intensity. J. Geophys. Res., 116, D23102, doi:10.1029/2011JD015904.

  • Jeong, H.-I., H. W. Linderholm, S.-H. Woo, C. Folland, B.-M. Kim, S.-J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956–1972, doi:10.1175/JCLI-D-12-00159.1.

    Article  Google Scholar 

  • Jeong, H.-I., T.-W. Park, J.-H. Choi, S.-W. Son, K. Song, J.-S. Kug, B.-M. Kim, H.-K. Kim, and S.-Y. Yim, 2016: Assessment of climate variability over East Asia-Korea for 2015/16 winter. Atmosphere, 26, 337–345 (in Korean with English abstract).

    Article  Google Scholar 

  • Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 3676–3680, doi:10.1002/2014GL059961.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kang, D., M.-I. Lee, J. Im, D. Kim, H.-M. Kim, H.-S. Kang, S. D. Schubert, A. Arribas, and C. MacLachlan, 2014: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys. Res. Lett., 41, 3577–3585, doi:10.1002/2014GL-060011.

    Article  Google Scholar 

  • Kang, I.-S., C.-H. Ho, and K.-D. Min, 1992: Long-range forecast of summer precipitation in Korea. J. Korean Meteor. Soc., 28, 283–292 (in Korean with English abstract).

    Google Scholar 

  • Kang, I.-S., 1998: Relationship between El Niño and climate variation over Korea peninsula. J. Korean Meteor. Soc., 34, 390–396 (in Korean with English abstract).

    Google Scholar 

  • Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383–395, doi:10.1007/s00382-002-0245-9.

    Article  Google Scholar 

  • Kang, I.-S., and J. H. Yoo, 2006: Examination of multi-model ensemble seasonal prediction methods using a simple climate system. Climate Dyn., 26, 285–294, doi:10.1007/s00382-005-0074-8.

    Article  Google Scholar 

  • Kim, H.-J., and J.-B. Ahn, 2015: Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM. J. Climate, 28, 8951–8967, doi:10.1175/JCLI-D-14-00457.1.

    Article  Google Scholar 

  • Kim, B.-M., E. Jung, G. Lim, and H. Kim, 2014a: Analysis on winter atmosphereic variability related to Arctic warming. Atmosphere, 24, 131–140 (in Korean with English abstract).

    Article  Google Scholar 

  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014b: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    Article  Google Scholar 

  • Kim, G., J.-B. Ahn, V. N. Kryjov, S.-J. Sohn, W.-T. Yun, R. Graham, R. K. Kolli, A. Kumar, and J.-P. Ceron, 2016: Global and regional skill of the seasonal predictions by WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble. Int. J. Climatol., 36, 1657–1675, doi:10.1002/ joc.4449.

    Article  Google Scholar 

  • Kim, H., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dyn., 39, 2957–2973, doi:10. 1007/s00382-012-1364-6.

    Article  Google Scholar 

  • Kim, S., H.-S. Kim, S.-K. Min, H.-Y. Son, D.-J. Won, H.-S. Jung, and J.-S. Kug, 2015: Intra-winter atmospheric circulation changes over East Asia and North Pacific associated with ENSO in a seasonal prediction model. Asia-Pac. J. Atmos. Sci., 51, 49–60, doi:10.1007/s13143-014-0059-9.

    Article  Google Scholar 

  • Kim, S., H.-Y. Son, and J.-S. Kug, 2016: How well do climate models simulate atmospheric teleconnctions over the North Pacific and East Asia associated with ENSO? Climate Dyn., doi:100.1007/s00382-016-3121-8.

  • Kirtman, B., and A. Pirani, 2009: The state of art of seasonal prediction: outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull. Amer. Meteor. Soc., 90, 455–458, doi:10.1175/2008BAMS2707.1.

    Article  Google Scholar 

  • Kirtman, B., and Coauthors, 2014: The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10. 1175/BAMS-D-12-00050.1.

    Article  Google Scholar 

  • Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574–7589, doi:10.1175/JCLI-D-12-00009.1.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2004a: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, doi:10.1126/ science.1100217.

    Article  Google Scholar 

  • Koster, R. D., M. J. Suarez, P. Liu, U. Jambor, A. Berg, M. Kistler, R. Reichle, M. Rodell, and J. Famiglietti, 2004b: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeorol., 5, 1049–1063, doi:10.1175/JHM-387.1.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol., 7, 590–610, doi:10.1175/JHM510.1.

    Google Scholar 

  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    Article  Google Scholar 

  • Koster, R. D., and Coauthors, 2011: The second phase of the global landatmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeorol., 12, 805–822, doi:10.1175/ 2011JHM1365.1.

    Article  Google Scholar 

  • Kug, J.-S., J.-Y. Lee, I.-S. Kang, B. Wang, and C.-K. Park, 2008: Optimal Multi-model ensemble method in seasonal climate prediction. Asia-Pac. J. Atmos. Sci., 44, 259–267.

    Google Scholar 

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi:10.1175/2008JCLI2624.1.

    Article  Google Scholar 

  • Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Nino events and climate variation over Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467–474, doi:10.1007/s13143-010-0027-y.

    Article  Google Scholar 

  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759–762, doi:10.1038/ngeo2517.

    Article  Google Scholar 

  • Kumar, A., and F. Yang, 2003: Comparative influence of snow and SST variability on extratropical climate in northern winter. J. Climate, 16, 2248–2261, doi:10.1175/2771.1.

    Article  Google Scholar 

  • Kumar, A., D. Pai, J. Singh, R. Singh, and D. Sikka, 2012: Statistical models for long-range forecasting of Southwest monsoon rainfall over India using stepwise regression and neural network. Atm. Clim. Sci., 2, 322–336, doi:10.4236/acs.2012.23029.

    Google Scholar 

  • Kunkel, K. E., S. A. Changnon, B. C. Reinke, and R. W. Arritt, 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77, 1507–1518, doi:10.1175/ 1520-0477(1996)077<1507:TJHWIT>2.0.CO;2.

    Article  Google Scholar 

  • Kuroda, Y., 2008: Role of the stratosphere on the predictability of mediumrange weather forecast: A case study of winter 2003-2004. Geophys. Res. Lett., 35, L19701, doi:10.1029/2008GL034902.

    Article  Google Scholar 

  • Kwon, M., and K.-J. Lee, 2014: A prediction of Northeast Asian summer precipitation using the NCEP climate forecast system and canonical correlation analysis. J. Korean Meteor. Soc., 35, 88–94 (in Korean with English abstract).

    Google Scholar 

  • Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 2461–2482, doi:10.1175/1520-0442(2000)013 <2461:DABFCO>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K.-M., K.-M. Kim, and J.-Y. Lee, 2004: Interannual variability, global teleconnection, and potential predictability associated with the Asian summer monsoon. In C.-P. Chang Ed., World Scientific Series on Meteorology of East Asia, Vol. 2. World Scientific, 153–176.

    Google Scholar 

  • Lau, K.-M., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeorol., 13, 392–403, doi:10.1175/JHM-D-11-016.1.

    Article  Google Scholar 

  • Lee, D.-Y., J.-B. Ahn, and K. Ashok, 2013a: Improvement of multimodel ensemble seasonal prediction skill over East Asia summer monsoon region using a climate filter concept. J. Appl. Meteor. Clim., 52, 1127–1138, doi:10.1175/JAMC-D-12-0123.1.

    Article  Google Scholar 

  • Lee, D.-Y., J.-B. Ahn, and J.-H. Yoo, 2015: Enhancement of seasonal prediction of East Asian summer rainfall related to western tropical Pacific convection. Climate Dyn., 45, 1025–1042, doi:10.1007/s00382-014-2343-x.

    Article  Google Scholar 

  • Lee, E.-J., J.-G., Jhun, and C.-K. Park, 2005: Remote connection of the east-Asian summer rainfall variation revealed by a newly defined monsoon index. J. Climate, 17, 4381–4393, doi:10.1175/JCLI3545.1.

    Article  Google Scholar 

  • Lee, H.-J., W.-S. Lee, and J.-H. Yoo, 2016: Assessment of medium-range ensemble forecasts of heat waves. Atmos. Sci. Lett., 17, 19–25, doi: 10.1002/asl.593.

    Article  Google Scholar 

  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267–283, doi:10.1007/s00382-010-0857-4.

  • Lee, J.-Y., and Coauthors, 2011a: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 1189–1203, doi:10.1007/s00382-010-0909-9.

  • Lee, J.-Y., S.-S. Lee, B. Wang, K.-J. Ha, and J.-G. Jhun, 2013b: Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dyn., 41, 573–587, doi:10.1007/s00382-012-1588-5.

    Article  Google Scholar 

  • Lee, J.-Y., and K.-J. Ha, 2015: Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical-extratropical teleconnection. J. Climate, 28, 8634–8647, doi:10. 1175/JCLI-D-15-0154.1.

    Article  Google Scholar 

  • Lee, S.-E., and K.-H. Seo, 2013: The development of a statistical forecast model for Changma. Wea. Forecasting, 28, 1304–1321, doi:10.1175/ WAF-D-13-00003.1.

    Article  Google Scholar 

  • Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011b: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 1173–1188, doi:10.1007/s00382-010-0832-0.

    Article  Google Scholar 

  • Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 4815–4830, doi:10.1002/joc.4671.

    Article  Google Scholar 

  • Li, J.-Y., and J.-Y. Mao, 2016: Experimental 15-day-lead statistical forecast of intraseasonal summer monsoon rainfall over Eastern China. Atmos. Ocean. Sci. Lett., 9, 66–73, doi:10.1080/16742834.2015.1126152.

    Article  Google Scholar 

  • Liptak, J., and C. Strong, 2014: The winter atmospheric response to sea ice anomalies in the Barents Sea. J. Climate, 27, 914–924, doi:10.1175/ JCLI-D-13-00186.1.

    Article  Google Scholar 

  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. National Academy of Sciences, 109, 4074–4079, doi:10.1073/pnas.1114910109.

    Article  Google Scholar 

  • Luo, J.-J., S. K. Behera, Y. Masumoto, and T. Yamagata, 2011: Impact of global ocean surface warming on seasonal-to-interannual climate prediction. J. Climate, 24, 1626–1646, doi: 10.1175/2010JCLI3645.1.

    Article  Google Scholar 

  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084, doi:10.1002/qj.2396.

    Article  Google Scholar 

  • Manney, G. L., and Coauthors, 2008: The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution. Atmos. Chem. Phys., 8, 505–522, doi:10.5194/acp-8-505-2008.

    Article  Google Scholar 

  • Marshall, A. G., D. Hudson, M. C. Wheeler, O. Alves, H. H. Hendon, M. J. Pook, and J. S. Risbey, 2014: Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dyn., 43, 1915–1937, doi:10.1007/s00382-013-2016-1.

    Article  Google Scholar 

  • Martineau, P., and S.-W. Son, 2015: Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Climate, 28, 7347–7370, doi:10.1175/JCLI-D-14-00478.1.

    Article  Google Scholar 

  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 1740–1745, doi:10. 1126/science.1132588.

    Article  Google Scholar 

  • Meehl, G. A., and C. Tebaldi., 2004: More intense, more frequent, and longer lasting heatwaves in the 21st century. Science, 305, 994–997, doi:10.1126/science.1098704.

    Article  Google Scholar 

  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26, 1589–1600, doi:10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2.

    Article  Google Scholar 

  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378–381, doi:10.1038/nature09763.

    Article  Google Scholar 

  • Min, S.-K., Y.-H. Kim, M.-K. Kim, and C. Park, 2014: Assessing human contribution to the summer 2013 Korean heat wave. Bull. Amer. Meteor. Soc., 95, S48–S51, doi:10.1175/1520-0477-95.9.S1.1.

    Google Scholar 

  • Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103–121, doi:10.1007/s13143-015-0066-5.

    Article  Google Scholar 

  • Min, Y.-M., V. N. Kryjov, and C.-K. Park, 2009: A probabilistic multimodel ensemble approach to seasonal prediction. Wea. Forecasting, 24, 812–828, doi:10.1175/2008WAF2222140.1.

    Article  Google Scholar 

  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. V.-G. de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345–349, doi:10.1038/ngeo2141.

    Article  Google Scholar 

  • Mo, R., and D. M. Straus, 2002: Statistical-dynamical seasonal prediction based on principal component regression of GCM ensemble integrations. Mon. Wea. Rev., 130, 2167–2187, doi:10.1175/1520-0493 (2002)130<2167:SDSPBO>2.0.CO;2.

    Article  Google Scholar 

  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869–873, doi:10.1038/ngeo2277.

    Article  Google Scholar 

  • Msadek, R., G. A. Vecchi, M. Winton, and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 5208–5215, doi:10.1002/2014GL060799.

    Article  Google Scholar 

  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, 192 pp.

    Google Scholar 

  • Oglesby, R. J., and D. J. Erickson III, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2, 1362–1380, doi: 10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2010: Technical Description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/ TN-478+STR, National Center for Atmospheric Research, Boulder, CO, 257 pp.

    Google Scholar 

  • Orsolini, Y. J., and N. G. Kvamstø, 2009: Role of Eurasian snow cover in wintertime circulation: Decadal simulations forced with satellite observations. J. Geophys. Res., 114, D19108, doi:10.1029/2009JD-012253.

    Article  Google Scholar 

  • Orsolini, Y. J., R. Senan, F. Vitart, G. Balsamo, A. Weisheimer, and F. J. Doblas-Reyes, 2016: Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/ 2010. Climate Dyn., 47, 1325–1334, doi:10.1007/s00382-015-2903-8.

    Article  Google Scholar 

  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic -cold continents: climate impacts of the newly open Arctic Sea. Polar Res., 30, doi:10.3402/polar.v30i0.15787.

  • Palecki, M. A., S. A. Changnon, and K. E. Kunkel, 2001: The nature and impacts of the July 1999 heat wave in the Midwestern United States: learning from the lessons of 1995. Bull. Amer. Meteor. Soc., 82, 1353–1367, doi:10.1175/1520-0477(2001)082<1353:TNAIOT>2.3.CO;2.

    Article  Google Scholar 

  • Palmer, T., and Coauthors, 2004: Development of a European Multi-Model Ensemble System for Seasonal to Inter-Annual Prediction (DEMETER) Bull. Amer. Meteor. Soc., 85, 853–872, doi:10.1175/BAMS-85-6-853.

    Article  Google Scholar 

  • Park, C. K., and S. D. Schubert, 1997: On the nature of the 1994 East Asian summer drought. J. Climate, 10, 1056–1070, doi:10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2.

    Article  Google Scholar 

  • Peings, Y., H. Douville, R. Alkama, and B. Decharme, 2011: Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Climate Dyn., 37, 985–1004, doi:10.1007/ s00382-010-0884-1.

    Article  Google Scholar 

  • Pepler, A. S., L. B. Diaz, C. Prodhomme, F. J. Doblas-Reyes, and A. Kumar 2015: The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Wea. Clim. Extremes, 9, 68–77, doi:10.1016/j.wace.2015.06.005.

    Article  Google Scholar 

  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    Article  Google Scholar 

  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49–ES53, doi:10.1175/BAMS-D-14-00139.1.

    Article  Google Scholar 

  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 1281–1299, doi:10. 1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    Article  Google Scholar 

  • Roff, G., D. W. J. Thompson, and H. Hendon, 2011: Does increasing model stratospheric resolution improve extended-range forecast skill? Geophys. Res. Lett., 38, doi:10.1029/2010GL046515.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillatoin. Mon. Wea. Rev., 115, 1606–1626, doi:10.1175/1520-0493(1987)115 <1606:GARSPP>2.0.CO;2.

    Article  Google Scholar 

  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514–2519, doi:10.1002/2014GL059637.

    Article  Google Scholar 

  • Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 51–56, doi:10.1002/asl.598.

    Article  Google Scholar 

  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: the role of stationary Rossby waves. J. Climate, 24, 4773–4792, doi:10.1175/JCLID-10-05035.1.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, doi:10.1038/nature09051.

    Article  Google Scholar 

  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81, 2593–2606, doi:10.1175/1520-0477(2000)081 <2593:DSP>2.3.CO;2.

    Article  Google Scholar 

  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966-2012. Environ. Res. Lett., 10, 054020, doi:10.1088/1748-9326/10/5/054020.

    Article  Google Scholar 

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moistureclimate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125–161, doi:10.1016/j.earscirev.2010.02.004.

    Article  Google Scholar 

  • Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northern East Asian monsoon precipitation revealed by airmass variability and its prediction. J. Climate, 28, 6221–6223, doi:10.1175/JCLI-D-14-00526.1.

    Article  Google Scholar 

  • Seviour, W. J. M., S. C. Hardiman, L. J. Gray, N. Butchart, C. MacLachlan, and A. A. Scaife, 2014: Skillful seasonal prediction of the Southern Annular Mode and Antarctic ozone. J. Climate, 27, 7462–7474, doi:10. 1175/JCLI-D-14-00264.1.

    Article  Google Scholar 

  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi:10.1175/JCLI3790.1.

    Article  Google Scholar 

  • Shim, T., J.-H. Jeong, J. OK, H.-S. Jeong, and B.-M. Kim, 2015: Development and assessment of dynamical seasonal forecast system using the cryospheric variables. Atmosphere, 25, 155–167, doi:10. 14191/Atmos.2015.25.1.155 (in Korean with English abstract).

    Article  Google Scholar 

  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98–102, doi:10.1038/ngeo1698.

    Article  Google Scholar 

  • Sohn, S.-J., Y.-M. Min, J.-Y. Lee, C.-Y. Tam, I.-S. Kang, B. Wang, J.-B. Ahn, and T. Yamagata, 2012: Assessment of the long-lead probabilistic prediction for the Asian summer monsoon precipitation (1983-2011) based on the APCC multimodel system and a statistical model. J. Geophys. Res., 117, D04102, doi:10.1029/2011JD016308.

    Article  Google Scholar 

  • Son, S.-W., A. Purich, H. H. Hendon, B.-M. Kim, and L. M. Polvani, 2013: Improved seasonal forecast using ozone hole variability? Geophys. Res. Lett., 40, 6231–6235, doi:10.1002/2013GL057731.

    Article  Google Scholar 

  • Song, K., S.-W. Son, and S.-H. Woo, 2015: Impact of sudden stratospheric warming on the surface air temperature in East Asia. Atmosphere, 25, 461–472, doi:10.14191/Atmos.2015.25.3.461 (in Korean with English abstract).

    Article  Google Scholar 

  • Sperber, K. R., C. Brankovic, M. Déqué, C. S. Frederiksen, R. Graham, A. Kitoh, C. Kobayashi, T. Palmer, K. Puri, W. Tennant, and E. Volodin, 2001: Dynamical seasonal predictability of the Asian summer monsoon. Mon. Wea. Rev., 129, 2226–2248, doi:10.1175/1520-0493(2001) 129<2226:DSPOTA>2.0.CO;2.

    Article  Google Scholar 

  • Stockdale, T., 2013: The EUROSIP system -a multi-model approach. Proc. ECMWF Seminar on Seasonal Prediction, 257–268.

    Google Scholar 

  • Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the SEARCH sea ice outlook 2008-2013. Geophys. Res. Lett., 41, 2411–2418, doi:10. 1002/2014GL059388.

    Article  Google Scholar 

  • Sun, J. Q., 2014: Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013. Chinese Sci. Bull., 59, 3465–3470, doi:10.1007/s11434-014-0425-0.

    Article  Google Scholar 

  • Sun, J., and J.-B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342–1353, doi: 10.1002/joc.4060.

    Article  Google Scholar 

  • Tang, Q., X. Zhang, X. Yang, and J. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    Article  Google Scholar 

  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 1056–1061, doi:10.1038/ngeo1988.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89, doi:10.1126/science. 1058958.

    Article  Google Scholar 

  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J. Climate, 15, 1421–1428, doi:10.1175/1520-0442(2002) 015<1421:SCTNHW>2.0.CO;2.

    Article  Google Scholar 

  • Tietsche, S., J. J. Day, V. Guemas, W. J. Hurlin, S. P. E. Keeley, D. Matei, R. Msadek, M. Collins, and E. Hawkins, 2014: Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys. Res. Lett., 41, 1035–1043, doi:10.1002/2013GL058755.

    Article  Google Scholar 

  • Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Japan, 74, 399–413.

    Google Scholar 

  • Trenberth, K., G. W. Branstator, D. karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14291–14324, doi:10.1029/97JC-01444.

    Article  Google Scholar 

  • Tripathi, O. P., and Coauthors, 2015a: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 987–1003, doi:10.1002/qj.2432.

    Article  Google Scholar 

  • Tripathi, O. P., A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015b: Enhancing long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, doi:10.1088/1748-9326/10/10/104007.

    Article  Google Scholar 

  • Tung, Y. L., C.-Y. Tam, S.-J. Sohn, and J.-L. Chu, 2013: Improving the seasonal forecast for summertime South China rainfall using statistical downscaling. J. Geophys. Res., 118, 5147–5159, doi:10.1002/jgrd.50367.

    Article  Google Scholar 

  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 1175–1214, doi:10.1007/s10712-014-9284-0.

    Article  Google Scholar 

  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 1889–1899, doi:10.1002/qj.2256.

    Article  Google Scholar 

  • Wagner, W., G. Lemoine, and H. Rott, 1999: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 191–207, doi:10.1016/S0034-4257(99)00036-X.

    Article  Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Climate, 13, 1571–1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Google Scholar 

  • Wang, B., and T. Li, 2004: East Asian Monsoon-ENSO interactions. In C.-P. Chang Ed., East Asian Monsoon, World Scientific Series on Meteorology of East Asia, Vol. 2. World Scientific, 177–212.

    Chapter  Google Scholar 

  • Wang, B., and Coauthors, 2008: How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Climate Dyn., 30, 605–619, doi:10.1007/s00382-007-0310-5.

    Article  Google Scholar 

  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93–117, doi:10.1007/s00382-008-0460-0.

    Article  Google Scholar 

  • Wang, B., B. Xiang, and J.-Y. Lee, 2013a: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci., 110, 2718–2722, doi:10.1073/pnas. 1214626110.

    Article  Google Scholar 

  • Wang, B., J.-Y. Lee, and B. Xiang, 2015: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., 44, 61–74, doi:10.1007/s00382-014-2218-1.

    Article  Google Scholar 

  • Wang, L., and W. Chen, 2014: The East Asian winter monsoon: Reamplification in the mid-2000s. Chinese Sci. Bull., 59, 430–436, doi:10.1007/s11434-013-0029-0.

    Article  Google Scholar 

  • Wang, W. W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong, 2013b: Summer high temperature extremes in southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res., 118, 8306–8319, doi:10.1002/jgrd.50633.

    Google Scholar 

  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophy. Res. Lett., 36, doi:10.1029/2009GL040896.

  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129, doi:10.1007/ s00382-007-0234-0.

    Article  Google Scholar 

  • Winton, M., 2006a: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.

    Google Scholar 

  • Winton, M., 2006b: Surface albedo feedback estimates for the AR4 climate models. J. Climate, 19, 359–365, doi:10.1175/JCLI3624.1.

    Article  Google Scholar 

  • Woo, S.-H., M.-K. Sung, S.-W. Son, and J.-S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dyn., 45, 3481–3492, doi:10.1007/s00382-015-2551-z.

    Article  Google Scholar 

  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    Article  Google Scholar 

  • Wu, Z., and L. Yu, 2016: Seasonal prediction of the East Asian summer monsoon with a partial-least square model. Climate Dyn., 46, 3067–3078, doi:10.1007/s00382-015-2753-4.

    Article  Google Scholar 

  • Wu, Z., H. Lin, J. Li, Z. Jiang, and T. Ma, 2012: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, doi:10.1029/2011JD016908.

    Google Scholar 

  • Xoplaki, E., J. F. González-Rouco, J. Luterbacher, and H. Wanner, 2003: Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Climate Dyn., 20, 723–739, doi:10.1007/s00382-003-0304-x.

    Google Scholar 

  • Yang, S., Z. Zhang, V. Kousky, R. Higgins, S.-H. Yoo, J. Liang, and Y. Fan, 2008: Simulations and seasonal prediction of Asian summer monsoon in the NCEP climate forecast system. J. Climate, 21, 3755–3775, doi:10.1175/2008JCLI1961.1.

    Article  Google Scholar 

  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Nino in a changing climate. Nature, 461, 511–514, doi:10.1038/nature08316.

    Article  Google Scholar 

  • Yoo, J. H., and I.-S. Kang, 2005: Theoretical examination of a multi-model composite for seasonal prediction. Geophys. Res. Lett., 32, L18707, doi:10.1029/ 2005GL023513.

    Article  Google Scholar 

  • Yoo, J. H., J. Cho, S. Hameed, R. Field, K. F. Kwan, and I. Albar, 2016: Toward a fire and haze early warning system for Southeast Asia. APN Science Bull., 6, 13–20.

    Google Scholar 

  • Yun, K.-S., Y.-W. Seo, K.-J. Ha, J.-Y. Lee, and Y. Kajikawa, 2014: Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO. Asia-Pac. J. Atmos. Sci., 50, 531–540, doi:10.1007/s13143-014-0042-5.

    Article  Google Scholar 

  • Yun, W. T., L. Stefanova, and T. N. Krishnamurti, 2003: Improvement of the multimodel superensemble technique for seasonal forecasts. J. Climate, 16. 3834–3840, doi:10.1175/1520-0442(2003)016<3834: IOTMST> 2.0.CO;2.

    Article  Google Scholar 

  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 49–62.

    Google Scholar 

  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Clim. Change, 2, 851–870, doi:10.1002/wcc.147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jee-Hoon Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, JH., Lee, H., Yoo, J.H. et al. The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pacific J Atmos Sci 53, 149–173 (2017). https://doi.org/10.1007/s13143-017-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0008-5

Key words

Navigation