Skip to main content
Log in

Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacteriocins are antimicrobial peptides synthesized and secreted by bacteria and could potentially be used as natural food preservatives. Here, we report the production of bacteriocin-like inhibitor substances (Bt-BLIS) by five Mexican strains of Bacillus thuringiensis. Bacillus thuringiensis subsp. morrisoni (LBIT 269), B. thuringiensis subsp. kurstaki (LBIT 287), B. thuringiensis subsp kenyae (LBIT 404), B. thuringiensis subsp. entomocidus (LBIT 420) and B. thuringiensis subsp. tolworthi (LBIT 524) produced proteinaceous Bt-BLIS with high levels of activity against Bacillus cereus and other gram-positive bacteria. Although none was active against the gram-negative bacteria, Escherichia coli, Shigella species and Pseudomonas aeruginosa, the five Bt-BLIS demonstrated antimicrobial activity against Vibrio cholerae, the etiologic agent of cholera. Biochemical and biophysical studies demonstrated that the five Bt-BLIS could be categorized into two groups, those produced by LBIT 269 and 287 (Group A) and LBIT 404, 420, 524 (Group B), based on relative time of peptide synthesis, distinctive bacterial target specificity and stability in a wide range of temperatures and pH. Because of their stability and bactericidal activities against B. cereus and V. cholerae agents of emetic, diarrheal and lethal syndromes in humans, these Bt-BLIS could potentially be used as biodegradable preservatives in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agaisse H, Gominet M, Okstad OA, Kolstφ AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in B. thuringiensis. Mol Microbiol 32:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Ahern M, Verschueren S, van Sinderen D (2003) Isolation and charaterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220:127–131

    Article  PubMed  CAS  Google Scholar 

  • Barboza-Corona JE, Nieto-Mazzocco E, Velázquez-Robledo R, Salcedo-Hernández R, Bautista M, Jiménez BJE Ibarra JE (2003) Molecular cloning of a chitinase gene from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Cherif A, Ouzari H, Daffonchio, Cherif H, Ben-Slama K, Hassen A, Jaoua A, Boudabous A (2001) Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett Appl Microbiol 32:243–247

    Article  PubMed  CAS  Google Scholar 

  • Cherif A, Chehimi S, Limen F, Hansen BM, Hendriksen NB, Daffonchio D, Boudabous A (2003) Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. Entomocidus HD-9. J Appl Microbiol 95:990–1000

    Article  PubMed  CAS  Google Scholar 

  • Crickmore N, Ziegler DR, Feitelson J, Schnepf E, van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal cristal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  Google Scholar 

  • Delgado A, Brito D, Fevereiro P, Tenreiro R, Peres C (2005) Bioactivity quantification of crude bacteriocin solutions. J Microbiol Meth 62:121–124

    Article  CAS  Google Scholar 

  • Delves-Broughton J (1990) Nisin and its use as a food preservative. Food Technol 44:100–117

    CAS  Google Scholar 

  • Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216

    Article  PubMed  CAS  Google Scholar 

  • Federici BA (2005) Insecticidal bacteria: an overwhelming success for invertebrate pathology. J Invertebr Pathol 89:30–38

    Article  PubMed  Google Scholar 

  • Francis KF, Mayr R, von Stetten F, Stewart GSAB, Scherer S (1998) Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock proteins genes. Appl Environ Microbiol 64:3525–3529

    PubMed  CAS  Google Scholar 

  • Gancz H, Niderman-Meyer O, Broza M, Kashi Y, Shimoni E (2005) Adhesion of Vibrio cholerae to granular starches. Appl Environ Microbiol 8:4850–4855

    Article  CAS  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006a) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  CAS  Google Scholar 

  • Gray EJ, Di Falco MR, Souleimanov A, Smith DL (2006b) Proteomic analysis of the bacteriocin thuricin 17 produced by Bacillus thruingiensis NEB 17. FEMS Microbiol Lett 255:27–32

    Article  CAS  Google Scholar 

  • Guinane CM, Cotter PD, Hill C, Ross RP (2005) Microbial solutions to microbial problems: lactococcal bacteriocins for the control of undesirable biota in food. J Appl Microbiol 98:1316–1325

    Article  PubMed  CAS  Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200

    PubMed  CAS  Google Scholar 

  • Kaletta C, Entian KD (1989) Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol 171:1597–1601

    PubMed  CAS  Google Scholar 

  • Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98:881–888

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R (2004) Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of gram-positive bacteria. Arch Microbiol 181:8–16

    Article  PubMed  CAS  Google Scholar 

  • Naclerio G, Ricca E, Sacco M, de Felice M (1993) Antimicrobial activity of a newly identified bacteriocins of Bacillus cereus. Appl Environ Microbiol 59:4313–4316

    PubMed  CAS  Google Scholar 

  • Paik HD, Bae SS, Park SH Pan JG (1997) Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J Ind Microbiol Biotechnol 19:294–298

    Article  PubMed  CAS  Google Scholar 

  • Park HW, Bideshi DK, Johnson JJ, Federici BA (1999) Differential enhancement of Cry2A versus Cry11A yields in Bacillus thuringiensis by use of the cry3A STAB mRNA sequence. FEMS Microbiol Lett 181:319–327

    Article  PubMed  CAS  Google Scholar 

  • Rogers AN, Montville J (1991) Improved agar diffusion assay for nisin quantification. Food Biotechnol 5:161–168

    Article  CAS  Google Scholar 

  • Rojas-Avelizapa LI, Cruz-Camarillo R, Guerrero MI, Rodríguez-Vázquez R, Ibarra JE (1999) Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J Microbiol Biotechnol 15:299–308

    Article  Google Scholar 

  • Siegel JP (2001) The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebr Pathol 77:13–21

    Article  PubMed  CAS  Google Scholar 

  • Winkowski K, Bruno ME, Montville TJ (1994) Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Appl Environ Microbiol 60:4186–4188

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the essential material and information provided by Jorge Ibarra, Irais Sánchez-Ortega and Ameur Cherif. We also thank Karina Villa-Rico for her technical assistance. This research was supported by grant UG-ICA-02-04 from the University of Guanajuato, México. H. V. A. and K. V. R. are undergraduate students supported by CONCyTEG and University of Guanajuato fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eleazar Barboza-Corona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barboza-Corona, J.E., Vázquez-Acosta, H., Bideshi, D.K. et al. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis . Arch Microbiol 187, 117–126 (2007). https://doi.org/10.1007/s00203-006-0178-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0178-5

Keywords

Navigation