Skip to main content

Advertisement

Log in

First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

From northern Tunisia, small-scale well-preserved microbialites, contemporaneous to the global oceanic anoxic event 2 (OAE 2) are first reported on the southern Tethyan Margin. These microbialites are encased within the pelagic organic-rich black shales of the Bahloul Formation (Cenomanian–Turonian transition). Biostratigraphic, petrographic, and geochemical investigations carried out to constrain their biogenicity and genesis character led to consider them as thrombolites and stromatolites occurring in lenticular bioherms/biostromes and columnar bodies co-relatable to the global ‘filament event’ of the authors, close to the base of the Watinoceras ammonite zone. Abundant clotted micrite, cyanobacterial filaments, and algal tissues point to the key process of microbial carbonate precipitation and to a major role played by microbes in the stabilisation and subsequent lithification, which in turn favoured the preservation of the original structure of the microbialites. These microbially induced carbonate formations are considered as favoured by chemosynthetic fauna of bivalve molluscs and lithistid sponges which were able to host symbiotic microbial communities. The latter contributed to the precipitation of authigenic calcite and non-carbonate minerals (e.g. pyrite) fuelled by microbial activity under sulphate-reducing conditions. The carbonate body onset is considered to be initiated by seafloor instability due to syndepositional fault acting that induced the appraisal of uplifted tilted blocks within oxygenated waters but near the anoxic water masses. Generated depressions allowed the development of chemosynthetic-based communities. Deep faults related to Triassic salt domes acted as conducts for hydrocarbon and salt brine expulsion to the seafloor and the microbialite growth was enhanced by an abrupt uprising sea level under warmer conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 9
Fig. 10
Fig. 3
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arthur MA, Schlanger SO, Jenkyns HC (1987) The Cenomanian–Turonian oceanic event II. Paleoceanographic controls on organic matter production and preservation. In: Brooks J, Fleet AJ (Eds), Marine and Petroleum Source Rocks. Geol Soc Lond Special Publ 26:401–420

  • Barrett P (1998) A comparative organic geochemical and stable isotope study of the Cenomanian–Turonian organic-rich sediments from Tunisia, Germany and the UK. PhD thesis, University of Newcastle, pp. 1–250

  • Barron EJ, Washington WM (1985) Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In: Sundquist ET, Broeker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archaean to present. American Geophysical Union Monograph, Washington, DC, pp 546–553

    Google Scholar 

  • Beauchamp B, Savard M (1992) Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios 7:434–450

    Article  Google Scholar 

  • Bechtel A, Pevaz M, Püttmann W (1998) Role of organic matter and sulphate-reducing bacteria for metal sulphide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb deposit (Tunisia). Chem Geol 144:1–21

    Article  Google Scholar 

  • Belka Z (1998) Early Devonian Kess–Kess carbonate mud mounds of the eastern Anti-Atlas (Morocco), and their relation to submarine hydrothermal venting. J Sediment Res 68:368–377

    Article  Google Scholar 

  • Ben Ayed N, Viguier C (1981) Interprétation structurale de la Tunisie atlasique. CRAS, Paris, t 292, série II, pp. 1445–1448

  • Bice KL, Norris RD (2002) Possible atmospheric CO2 extremes of the middle Cretaceous (Late Albian-Turonian). Paleoceanography 17:1–17

    Google Scholar 

  • Bishop WF (1988) Petroleum geology of East-Central Tunisia. AAPG Bull 72(9):1033–1058

    Google Scholar 

  • Boltenhagen C (1981) Paléogéographie du Crétacé moyen de la Tunisie centrale. Congrès des Sciences de la Terre, Tunis, pp 97–114

    Google Scholar 

  • Bralower TJ, Fullagar PD, Paull CK, Dwyer GS, Leckie RM (1997) Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. GSA Bull 109:1421–1442

    Article  Google Scholar 

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Min Géol 18:1–350

    Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94

    Article  Google Scholar 

  • Caron M, Dall’Agnolo S, Accarie H, Barrera E, Kauffman EG, Amedro F, Robaszynski F (2006) High-resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation. Geobios 39:171–200

    Article  Google Scholar 

  • Cavalazzi B, Barbieri R, Orig G (2007) Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco). Sediment Geol 200:73–88

    Article  Google Scholar 

  • Erbacher J, Thurow J, Littke R (1996) Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:499–502

    Article  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1986) La pyrolyse Rock-Eval et ses applications: Troisième partie. Rev Inst Fr Pét 41:73–89

    Google Scholar 

  • Farrimond P, Eglinton G, Brassell SC, Jenkyns HC (1990) The Cenomanian/Turonian anoxic event in Europe: an organic geochemical study. Mar Pet Geol 7:75–89

    Article  Google Scholar 

  • Guirand R, Maurin JC (1991) Le rifting en Afrique au Crétacé inférieur: synthèse structurale, mise en évidence de deux étapes dans la genèse des bassins, relations avec les ouvertures océaniques péri-africaines. Bull Soc Géol Fr 162:811–823

    Article  Google Scholar 

  • Han X, Suess E, Sahling H, Wallman K (2004) Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates. Int J Earth Sci 93:596–611

    Google Scholar 

  • Hemadi H (1987) Les silicates et carbonates authigènes des diapirs du Nord de la Tunisie, signification chimique et thermique. Thèse de Doctorat, Université de Paris Sud Orsay, 182 p

  • Hoefs J (1980) Stable isotope geochemistry, 2nd edn. Springer, Berlin, 208 pp

  • Jati M, Grosheny D, Ferry S, Gauthier-Lafaye F, El Kamali N (2003) Enregistrement biologique, géochimique et séquentiel de la crise cénomano-turonienne sur la marge atlantique (Aghadir, Maroc). WWW.asf.epoc.u-bordeau1.fr/congres_2003/posters/Jati.pdf

  • Jones C, Jenkyns HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci 301:112–149

    Article  Google Scholar 

  • Kiel S, Peckmann J (2007) Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40:345–357

    Article  Google Scholar 

  • Layeb M (1990) Etude géologique, géochimique et minéralogique, régionale, des faciès riches en matière organique de la Formation Bahloul d’âge Cénomano-Turonien dans le domaine de la Tunisie Nord-Centrale. Ph.D. thesis, Univ. de Tunis II, pp. 1–209

  • Layeb M, Belayouni H (1989) La formation Bahloul au Centre et au Nord de la Tunisie: un exemple de bonne roche mère de pétrole à fort intérêt pétrolier. Actes des 2èmes journées de géologie tunisienne appliquée à la recherche des hydrocarbures. Mém ETAP 3:489–503

    Google Scholar 

  • Layeb M, Belayouni H (1999) Paléogéographie de la Formation Bahloul (passage Cénomanien-Turonien). Ann Min Géol 40:21–44

    Google Scholar 

  • Layeb M, Ben Fadhel M, Ben Youssef M (2012) Thrombolitic and coral buildups in the Upper Albian of the Fahdene basin (North Tunisia): stratigraphy, sedimentology and genesis. Bull Soc Géol Fr t 183 n° 3:217–231

    Article  Google Scholar 

  • Lüning S, Kolonic S, Belhadj EM, Belhadj Z, Cota L, Bariæ G, Wagner T (2004) Integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. Earth Sci Rev 64:51–117

    Article  Google Scholar 

  • Martinez C, Truillet R (1987) Evolution structurale et paléogéographie de la Tunisie. Ment Soc Geol It 38:35–45, 4 ff

    Google Scholar 

  • Montacer M, Disnar JR, Orgeval JJ, Trichet J (1988) Relationship between Zn–Pb ore and oil accumulation processes: example of the Bou Grine deposit, Tunisia. Org Geochem 13:423–431

    Article  Google Scholar 

  • Negra MH, Zagrarni MF, Hanini A, Strasser A (2011) The filament event near the Cenomanian–Turonian boundary in Tunisia: filament origin and environmental signification. Bull Soc Géol Fr t 182(6):507–519

    Article  Google Scholar 

  • Neuweiler F, Bourque PA, Boulvain F (2001) Why is stromatactis so rare in Mesozoic carbonate mud mounds? Terra Nova 13:338–346

    Article  Google Scholar 

  • Orgeval JJ (1994) Peridiapiric metal concentration: example of the Bou Grine deposit (Tunisian Atlas). In: Fontboté L, Boni M (eds) Sediment-hosted Zn–Pb Ores. Society of Geology Applied to Mineral Deposits, Special Publication, vol. 10, pp. 354–388

  • Patriat M, Ellouz N, Dey Z, Gaulier JM, Ben Kilani H (2003) The Hammamet, Gabes and Chotts basins (Tunisia): a review of the subsidence history. Sediment Geol 156:241–262

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Peckmann J, Walliser OH, Riegel W, Reitner J (1999) Signatures of hydrocarbon venting in a Middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Anti-Atlas, Morocco). Facies 40:281–296

    Article  Google Scholar 

  • Perthuisot V (1978) Dynamique et pétrogenèse des extrusions triasiques de Tunisie. Travaux du laboratoire de Géologie 12: 312 p

  • Reitner J, Wilmsen M, Neuweiler F (1995) Cenomanian/Turonian Sponge Microbialite Deep-Water Hardground Community (Liencres, Northern Spain). Facies 32:203–212

    Article  Google Scholar 

  • Robaszynski F, Zagrarni MF, Caron M, Amédro F (2010) The global bio-events at the Cenomanian–Turonian transition in the reduced Bahloul Formation of Bou Ghanem (Central Tunisia). Cretac Res 31:1–15

    Article  Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnb 55:179–184

    Google Scholar 

  • Soua M, Tribovillard N (2007) Modèle de sédimentation au passage Cénomanien-Turonien pour la formation Bahloul en Tunisie. C R Geosci 339:692–701

    Article  Google Scholar 

  • Soua M, Echihi O, Herkat M, Zaghbib-Turki D, Smaoui J, Fakhfakh-Ben Jemia H, Belghagi H (2009) Structural context of the paleogeography of the Cenomanian–Turonian anoxic event in the eastern Atlas basins of the Maghreb. C R Geosci 341(12):1029–1037

    Article  Google Scholar 

  • Stakes DS, Oranges D, Paduan J, Salamy K, Maher N (1999) Cold seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Article  Google Scholar 

  • Talbi R, Belayouni H, Layeb M (1988) Le Vraconien du Nord et du Centre Tunisien: un bel exemple d’une roche mère de pétrole à fort intérêt pétrolier. Actes des 1ères Journées de Géologie Appliquée et Jubilé de Mr Ahmed Azzouz, Sfax, Tunisie: 143–160

  • Thurow J, Kuhnt W (1986) Mid-Cretaceous of the Gibraltar Arch area. In: Summerhayes CP, Shackleton (eds) North American Palaeoceanography 21, Geol Soc Spec Publ, pp. 423–445

  • Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Doctorat d’Etat, Faculté des Sciences de Tunis, 263 p

  • Veiser J (1983) Trace elements and isotopes in sedimentary carbonates. In: Reeder RJ (ed) Reviews in mineralogy. Miner Soc Am 11:265–299

  • Zagrarni MF, Negra MH, Hanini A (2008) Cenomanian–Turonian facies and sequence stratigraphy, Bahloul Formation, Tunisia. Sediment Geol 204:18–35

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Professor M. Al Amri chief editor of the AJGS and two anonymous reviewers for pertinent suggestions that contributed to improve the scientific content of the manuscript. We are also thankful to Monika Segl and Tobias Himmler (both University of Bremen) for stable isotope measurements. We are greatly obliged to Mr. and Mm. the Professors Federico Oloriz (Dpto. de Estratigraphia y paleontologia de la Facultad de Ciencias, Universidad de Granada and Instituto Andaluz de Geologia Mediterranea, I.AG.M.-C.S.I.C., Granada) and Beatriz Marquez (Dpto. Geologia, Facultade de Ciencias e Tecnologia, Universidade Nova de Lisboa) for their help during the field trip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Layeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layeb, M., Fadhel, M.B., Layeb-Tounsi, Y. et al. First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab J Geosci 7, 3349–3363 (2014). https://doi.org/10.1007/s12517-013-0988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0988-0

Keywords

Navigation