Skip to main content
Log in

Laser saturation grating phenomena

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Spatial hole burning of population differences by standing waves is considered in terms of Bragg-like gratings. This philosophy is used to explain increased saturation in two-mirror, single-mode laser operation with stationary active systems, modified mode coupling in the corresponding two-mode operation, an intensity dip that might occur in flowed standing wave lasers, bistable unidirectional ring laser operation, and increased saturation in distributed feedback lasers. The analysis is developed for both stationary media and for those moving with respect to the standing wave. The latter treatment is used to interpret washout of grating contributions in Doppler broadened media, and to determine level decay constants in stationary media. This last application constitutes a stationary system analog to the Doppler medium's Lamb dip spectroscopy and can be called saturation grating spectroscopy. Knowledge of the decay constants is particularly important in laser studies involving coherent mode couplings such as due to saturation grating scattering and population pulsations. It is further shown that the same equations result for probe and saturating waves propagating in the same direction. One then obtains a signal absorption with a heterodyne advantage. Inasmuch as diffusion affects the two methods quite differently, this phenomenon should be easily examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Tang, H. Statz, G. DeMars: J. Appl. Phys.34, 2289 (1963);

    Article  Google Scholar 

  2. H. Haken, H. Sauermann: Z. Physik173, 261 (1963)

    Article  Google Scholar 

  3. J. Hambenne, M. Sargent III: IEEE J. Quant. Electr. QE-11, 90 (1975) The effect was derived without the grating interpretation by J. A. White, Phys. Rev.137, A1651 (1965); S. G. Zeiger, E. E. Fradkin, Opt. Spektr.21, 386 (1966); and by K. Takata: Jap. J. Appl. Phys.11, 699 (1972).

    Article  ADS  Google Scholar 

  4. G. Marowsky and K. Kaufmann (IEEE J. Quantum Electron. to be published) have observed a counterexample to the bistable, unidirectionality, perhaps explainable by appearance of cavity anisotropy

  5. J. A. White: Nature20, 911 (1964)

    Article  ADS  Google Scholar 

  6. H. G. Danielmeyer: J. Appl. Phys.42, 3125 (1971)

    Article  ADS  Google Scholar 

  7. M. Sargent III: InApplications of lasers to atomic and molecular physics, Les Houches summer school, ed. by R. Balian and S. Haroche (North-Holland Pub. Co., Amsterdam 1976). Much of the material in the present paper is motivated in these lectures

    Google Scholar 

  8. The idea that saturation gratings might be useful for spectroscopy developed in stimulating conversations with R. Brewer, W. Fairbank, and especially with F. Keilmann to whom the author is very grateful

  9. M. Sargent III, M. O. Scully, W. E. Lamb, Jr.:Laser Physics (Addison-Wesley Pub. Co., Reading, Mass. 1974)

    Google Scholar 

  10. H. G. Danielmeyer, M. Sargent III, P. Toschek: To be published. E. V. Baklanov and V. P. Chebotaev have applied the corunning case to Doppler broadened media (Op. Cit. Ref. 9)

  11. See, for example, P. W. Smith, T. W. Hänsch: Phys. Rev. Letters26, 740 (1971), T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Letters27, 707 (1971). For theory see S. Haroche, F. Hartmann: Phys. Rev. A6, 1280 (1972); and E. V. Baklanov, V. P. Chebotaev: Soviet Phys. JETP34, 490 (1972). A general review has been given by P. Toschek: Colloques Internationaux des C.N.R.S., No.217, 13 (1973)

    Article  ADS  Google Scholar 

  12. Coherent saturation phenomena are well known in three level spectroscopy; see reviews by M.Feld, P.Toschek: In Les Housches proceedings, op. cit. ed. by

    Google Scholar 

  13. H. Eichler, P. Glozbach, B. Kluzowski: Z. Angew. Physik28, 303 (1970); see also H. Eichler, H. Stahl: J. Appl. Phys.44, 3429 (1973);44, 5383 (1973); and H. J. Eichler, J. Eichler: J. Appl. Phys.45, 4950 (1974). W. Rother, H. Meyer, W. Kaiser (Z. Naturforsch.25a, 1136 (1970)) studied what one might call thermal gratings with a method very much like the grating dip spectroscopy of Sect. 5

    Google Scholar 

  14. H. G. Danielmeyer: J. Appl. Phys.41, 4014 (1970); H. G. Danielmeyer, W. G. Nilsen; Appl. Phys. Letters16, 124 (1970); and H. G. Danielmeyer, E. H. Turner: Appl. Phys. Letters17, 519 (1970)

    Article  ADS  Google Scholar 

  15. J. Hambenne, M. Sargent III: Phys. Rev. A (1976)

  16. L. N. Menegozzi, W. E. Lamb, Jr.: Phys. Rev. A8, 2103 (1973); see also K. Tanaka, op. cit. [2]

    Article  ADS  Google Scholar 

  17. S. Stenholm, W. E. Lamb, Jr.: Phys. Rev.181, 618 (1969)

    Article  ADS  Google Scholar 

  18. W. E. Lamb, Jr.: Phys. Rev.134, A1429 (1964)

    Article  ADS  Google Scholar 

  19. K. M. Evenson, F. R. Peterson: InLaser Applications to Optics and Spectroscopy, ed. by S. F. Jacobs, M. Sargent III, J. F. Scott, and M. O. Scully (Addison-Wesley Publ. Comp., Reading, Mass. 1975)

    Google Scholar 

  20. H. Kogelnik, C. V. Shank: J. Appl. Phys.43, 2327 (1972); see also A. Yariv,Quantum Electronics (John Wiley and Sons, New York 1975) Sect. 19.6

    Article  ADS  Google Scholar 

  21. I. S. Gradshteyn, I. M. Ryzhik:Table of Integrals, Series, and Products (Academic Press, New York 1965) p. 149

    Google Scholar 

  22. C. V. Shank, J. E. Bjorkholm, H. Kogelnik: Appl. Phys. Letters18, 395 (1971)

    Article  Google Scholar 

  23. K. O. Hill, A. Watanabe: Appl. Opt.14, 950 (1975)

    ADS  Google Scholar 

  24. H. G. Danielmeyer: InFestkörperprobleme, Vol. 15 (Advances in Solid State Physics15), ed. by H. J. Queisser, Pergamon/Vieweg, Braunschweig 1975) p. 253

    Google Scholar 

  25. M. Sargent III: To be published

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by a U.S. Senior Scientist Award (administered by the Alexander von Humboldt Stiftung) and in part by the Space and Missile Systems Organization, Los Angeles, California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargent, M. Laser saturation grating phenomena. Appl. Phys. 9, 127–141 (1976). https://doi.org/10.1007/BF00903949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00903949

Index Headings

Navigation