Skip to main content
Log in

Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thioredoxin is crucial for the maintenance of the redox status of cells of all types. Mammalian thioredoxin is secreted from various types of cells, although the mechanism underlying has not yet been clarified. Previously, we demonstrated that thioredoxin was released from Saccharomyces cerevisiae after treatment with ethanol. In this paper, we show that as well as ethanol, low-pH shock and hypoosmotic shock release thioredoxin. Low-molecular-weight proteins in yeast cells were preferentially released by treatment with ethanol and low-pH shock. A cell wall integrity pathway seems partially involved in the hypoosmotic shock-induced release of thioredoxin. Considerable amounts of thioredoxin were present in the insoluble fractions of the cells, a portion of which was associated with lipid microdomains that are resistant to nonionic detergent at 4°C. The intracellular localization of thioredoxin may influence the efficiency of its release from yeast cells with ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674

    Article  CAS  Google Scholar 

  • Bagnat M, Keränen S, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97:3254–3259

    Article  CAS  Google Scholar 

  • Cid VJ, Duran A, del Rey F, Snyder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Kruijff B, Gerritsen WJ, Oerlemans A, Deme RA, Van Deenen LLM (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339:30–43

    Article  Google Scholar 

  • Dekigai H, Nakamura H, Bai J, Tanito M, Masutani H, Hirota K, Matsui H, Murakami M, Yodoi J (2001) Geranylgeranylacetone promotes induction and secretion of thioredoxin in gastric mucosal cells and peripheral blood lymphocytes. Free Radic Res 35:23–30

    Article  CAS  Google Scholar 

  • Drgonova J, Drgon T, Roh DH, Cabib E (1999) The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J Cell Biol 146:373–387

    Article  CAS  Google Scholar 

  • el Yaagoubi A, Kohiyama M, Richarme G (1994) Localization of DnaK chaperone 70 from Escherichia coli in an osmotic-shock-sensitive compartment of the cytoplasm. J Bacteriol 176:7074–7078

    Article  CAS  Google Scholar 

  • Elazar Z, Scherz-Shouval R, Shorer H (2003) Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics. Biochim Biophys Acta 1641:145–156

    Article  CAS  Google Scholar 

  • Fiedler K, Kobayashi T, Kurzchalia TV, Simons K (1993) Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:6365–6373

    Article  CAS  Google Scholar 

  • Finkelstein A, Holz R (1973) Aqueous pores created in thin lipid membranes by the polyene antibiotic nystatin and amphotericin B. In: Eisenman G (ed) Membranes, vol 2. Dekker, New York, pp 377–408

    Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  CAS  Google Scholar 

  • Inoue Y, Nomura W, Takeuchi Y, Ohdate T, Tamasu S, Kitaoka A, Kiyokawa Y, Masutani H, Murata K, Wakai Y, Izawa S, Yodoi J (2007) Efficient extraction of thioredoxin from Saccharomyces cerevisiae with ethanol. Appl Environ Microbiol 73:1672–1675

    Article  CAS  Google Scholar 

  • Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, Kimura A (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459–28465

    Article  CAS  Google Scholar 

  • Kato M, Wickner W (2003) Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Proc Natl Acad Sci USA 100:6398–6403

    Article  CAS  Google Scholar 

  • Kondo N, Nakamura H, Masutani H, Yodoi J (2006) Redox regulation of human thioredoxin network. Antioxid Redox Signal 8:1881–1890

    Article  CAS  Google Scholar 

  • Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3433–3436

    Google Scholar 

  • Lee KS, Irie K, Gotoh Y, Watanabe Y, Araki H, Nishida E, Matsumoto K, Levin DE (1993) A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13:3067–3075

    Article  CAS  Google Scholar 

  • Lunn CA, Pigietg VP (1982) Localization of thioredoxin from Escherichia coli in an osmotically sensitive compartment. J Biol Chem 257:11424–11430

    CAS  PubMed  Google Scholar 

  • Newman AP, Ferro-Novick S (1990) Defining components required for transport from the ER to the Golgi complex in yeast. BioEssays 12:485–491

    Article  CAS  Google Scholar 

  • Okamoto M, Yoko-o T, Umemura M, Nakayama K, Jigami Y (2006) Glycosylphosphatidylinositol-anchored proteins are required for the transport of detergent-resistant microdomain-associated membrane proteins Tat2p and Fur4p. J Biol Chem 281:4013–4023

    Article  CAS  Google Scholar 

  • Paravicini G, Cooper M, Friedli L, Smith DJ, Carpentier JL, Klig LS, Payton MA (1992) The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol 12:4896–4905

    Article  CAS  Google Scholar 

  • Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  CAS  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552

    Article  CAS  Google Scholar 

  • Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R (1992) Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem 267:24161–24164

    CAS  PubMed  Google Scholar 

  • Schmidt A, Bickle M, Beck T, Hall MN (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542

    Article  CAS  Google Scholar 

  • Sekiya-Kawasaki M, Abe M, Saka A, Watanabe D, Kono K, Minemura-Asakawa M, Ishihara S, Watanabe T, Ohya Y (2002) Dissection of upstream regulatory components of the Rho1p effecter, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 162:663–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sievi E, Suntio T, Makarow M (2001) Proteolytic function of GPI-anchored plasma membrane protease Yps1p in the yeast vacuole and Golgi. Traffic 2:896–907

    Article  CAS  Google Scholar 

  • Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamur J, Brown N, Arai K, Yokota T, Wakasugi H, Yodoi J (1989) ATL-derived factor ADF, an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8:757–764

    Article  CAS  Google Scholar 

  • Teshigawara K, Maeda M, Nishino K, Nikaido T, Uchiyama T, Tsudo M, Wano Y, Yodoi J (1985) Adult T leukemia cells produce a lymphokine that augments interleukin 2 receptor expression. J Mol Cell Immunol 2:17–26

    CAS  PubMed  Google Scholar 

  • Umebayashi K, Nakano A (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 161:1117–1131

    Article  CAS  Google Scholar 

  • Xu Z, Wickner W (1996) Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol 132:787–794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. M. Hall and Y. Ohya for plasmids. We are also grateful to T. Yasuoka for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, Y., Nomura, W., Ohdate, T. et al. Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol. Appl Microbiol Biotechnol 75, 1393–1399 (2007). https://doi.org/10.1007/s00253-007-0949-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0949-1

Keywords

Navigation