Skip to main content
Log in

Disposable DNA biosensor with the carbon nanotubes–polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)3]2+ redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)6]3−/4− indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT–PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT–PEI interface exhibited better properties than the MWCNT–chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time.

Impedance spectra for the modified electrodes. Conditions: 1 mM [Fe(CN)6]3–/4– in 0.1 M PBS (pH = 7.0), potential amplitude 10 m V, frequency range 12–1×104 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Labuda J, Fojta M, Jelen F, Paleček E (2006) Encyclopedia of sensors: electrochemical sensors with DNA recognition layer. American Scientific, CA USA

    Google Scholar 

  2. Lucarelli DF, Kicela A, Palchetti I, Marrazza G, Mascini M (2002) Bioelectrochem 58:113–118

    Article  CAS  Google Scholar 

  3. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Pure Appl Chem 71:2333–2348

    Article  CAS  Google Scholar 

  4. Labuda J, Bučková M, Heilerová Ľ, Šilhár S, Štepánek I (2003) Anal Bioanal Chem 376:168–173

    Article  CAS  Google Scholar 

  5. Ziyatdinova G, Galandova J, Labuda J (2008) Int J Electroanal Sci 3:223–235

    CAS  Google Scholar 

  6. Balasubramanian K, Burghard M (2006) Anal Bioanal Chem 385:451–468

    Article  Google Scholar 

  7. He P, Xu Y, Fang Y (2006) Microchim Acta 152:175–186

    Article  CAS  Google Scholar 

  8. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Talanta 74:291–307

    Article  CAS  Google Scholar 

  9. Shie J-W, Yogeswaran U, Chen S-M (2008) Talanta 74:1659–1669

    Article  CAS  Google Scholar 

  10. Guo M, Chen J, Liu D, Nie L, Yao S (2004) Bioelectrochemistry 62:29–35

    Article  CAS  Google Scholar 

  11. Guo M, Chen J, Nie L, Yao S (2004) Electrochim Acta 49:2637–2643

    Article  CAS  Google Scholar 

  12. He P, Bayachou M (2005) Langmuir 21:6086–6092

    Article  CAS  Google Scholar 

  13. Wang J, Kawde A-N, Musameh M (2003) Analyst 128:912–916

    Article  CAS  Google Scholar 

  14. Gooding JJ (2005) Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  15. Trojanowitz M, Mulchandani A, Mascini M (2004) Anal Letters 37:3185–3204

    Article  Google Scholar 

  16. Zhang J, Gao L (2007) Mater Lett 61:3571–3574

    Article  CAS  Google Scholar 

  17. Wang J, Musameh M, Lin Z (2003) J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  18. Rivas GA, Miscoria SA, Desbrieres J, Barrera GD (2007) Talanta 71:270–275

    Article  CAS  Google Scholar 

  19. Galandova J, Ziyatdinova G, Labuda J (2008) Anal Sci 24:711–716

    Article  CAS  Google Scholar 

  20. Li J, Liu Q, Liu Y, Liu S, Yao S (2005) Anal Biochem 346:107–114

    Article  CAS  Google Scholar 

  21. Bollo S, Ferreyra NF, Rivas GA (2007) Electroanalysis 19:833–840

    Article  CAS  Google Scholar 

  22. Wang G, Xu J-J, Chen H-Y (2002) Electrochem Commun 4:506–509

    Article  CAS  Google Scholar 

  23. Rubianes MD, Rivas GA (2007) Electrochem Commun 9:480–484

    Article  CAS  Google Scholar 

  24. Shim M, Javey A, Kam NWS, Dai H (2001) J Am Chem Soc 123:11512–11513

    Article  CAS  Google Scholar 

  25. Herlem G, Lakard B (2004) J Chem Phys 120:9376–9382

    Article  CAS  Google Scholar 

  26. Kolasinska M, Krastev R, Warszynski P (2007) J Coll Interface Sci 305:46–56

    Article  CAS  Google Scholar 

  27. Arribas AS, Bermejo E, Chicharo M, Zapardiel A, Luque GL, Ferreyra NF, Rivas GA (2007) Anal Chim Acta 596:183–194

    Article  CAS  Google Scholar 

  28. Lojou E, Bianco P (2007) Electrochim Acta 52:7307–7314

    Article  CAS  Google Scholar 

  29. Labuda J, Ovadekova R, Galandova J (2009) Microchim Acta 164:371–377

    Article  CAS  Google Scholar 

  30. Jantová S, Ovádeková R, Letašiová S, Špirková K, Stankovský Š (2005) Folia Microbiologica 50:90–94

    Article  Google Scholar 

  31. Ovadekova R, Labuda J (2006) Curr Top Electrochem 11:21–56

    CAS  Google Scholar 

  32. Pejcic B, De Marco R (2006) Electrochimica Acta 51:6217–6229

    Article  CAS  Google Scholar 

  33. Jantová S, Letašiová S, Repický A, Ovádeková R, Lakatoš B (2006) Cell Biochem Funct 24:519–530

    Article  Google Scholar 

  34. Jantová S, Letašiová S, Ovádeková R, Mučková M (2006) Neoplasma 53:291–300

    PubMed  Google Scholar 

  35. Pang D-W, Zhang M, Wang Z-L, Qi Y-P, Cheng J-K, Liu Z-Y (1996) J Electroanal Chem 403:183–188

    Article  Google Scholar 

  36. Forrest ML, Koerber JT, Pack DW (2003) Bioconjugate Chem 14:934–940

    Article  CAS  Google Scholar 

  37. Long EC, Barton JK (1990) Acc Chem Res 23:271–273

    Article  CAS  Google Scholar 

  38. Hays HCW, Millner PA, Prodromidis MI (2006) Sensors Actuators B 114:1064–1070

    Article  CAS  Google Scholar 

  39. Katz E, Willner I (2003) Electroanalysis 15:913–917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Applied Research Project of the Ministry of Education of Slovak Republic (AV/4/0103/06) and Scientific Grant Agency VEGA project (1/0852/08). The authors thank gratefully Assoc. Prof. Š. Stankovský, Assoc. Prof. K. Špirková, and Assoc. Prof. S. Jantová (STU in Bratislava) for the quinazoline preparatives and Dr. G. Ziyatdinova (Kazan State University, Kazan, Russia) for help with the impedimetric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Labuda.

Additional information

Dedicated to Professor Jan Garaj on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galandová, J., Ovádeková, R., Ferancová, A. et al. Disposable DNA biosensor with the carbon nanotubes–polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines. Anal Bioanal Chem 394, 855–861 (2009). https://doi.org/10.1007/s00216-009-2740-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2740-x

Keywords

Navigation