Skip to main content
Log in

Fast quantification of amino acids by microchip electrophoresis–mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fast microchip electrophoresis–nano-electrospray ionization-mass spectrometric method (MCE-nanoESI-MS) was developed for analysis of amino acids in biological samples. A glass/poly(dimethylsiloxane) hybrid microchip with a monolithic nanoESI emitter was used in the platform. The proposed MCE-nanoESI-MS analytical method showed high separation efficiency for amino acids. Baseline separation of an amino acid mixture containing Lys, Arg, Val, Tyr, and Glu was completed within 120 s with theoretical plate numbers of >7,500. The method was applied to study cellular release of excitatory amino acids (i.e., aspartic acid (Asp) and glutamic acid (Glu)) under chemical stimulations. Linear calibration curves were obtained for both Asp and Glu in a concentration range from 1.00 to 150.0 μM. Limits of detection were found to be 0.37 μM for Asp and 0.33 μM for Glu (S/N = 3). Assay repeatability (relative standard deviation, n = 6) was 4.2 and 4.5 %, for Asp and Glu at 5.0 μM, respectively. In the study of cellular release, PC-12 nerve cells were incubated with alcohol at various concentrations for 1 h. Both extra- and intracellular levels of Asp and Glu were measured by the proposed method. The results clearly indicated that ethanol promoted the release of both Asp and Glu from the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Nature 442:412–418

    Article  CAS  Google Scholar 

  2. Baker CA, Roper MG (2012) Anal Chem 84:2955–2960

    Article  CAS  Google Scholar 

  3. Chen Q, Wu J, Zhang Y, Lin JM (2012) Anal Chem 84:1695–1701

    Article  CAS  Google Scholar 

  4. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Anal Chem 82:967–973

    Article  CAS  Google Scholar 

  5. Mao P, Gomez-Sjoberg R, Wang D (2013) Anal Chem 85:816–819

    Article  CAS  Google Scholar 

  6. Chambers AG, Ramsey JM (2012) Anal Chem 84:1446–1451

    Article  CAS  Google Scholar 

  7. Dayon L, Josserand J, Girault HH (2005) Phys Chem Chem Phys: PCCP 7:4054–4060

    Article  CAS  Google Scholar 

  8. Iannacone JM, Jakubowski JA, Bohn PW, Sweedler JV (2005) Electrophoresis 26:4684–4690

    Article  CAS  Google Scholar 

  9. Nordman N, Sikanen T, Aura S, Tuomikoski S, Vuorensola K, Kotiaho T, Franssila S, Kostiainen R (2010) Electrophoresis 31:3745–3753

    Article  CAS  Google Scholar 

  10. Sun X, Kelly RT, Tang K, Smith RD (2011) Anal Chem 83:5797–5803

    Article  CAS  Google Scholar 

  11. Kleparnik K (2013) Electrophoresis 34:70–85

    Article  CAS  Google Scholar 

  12. Flangea C, Serb A, Sisu E, Zamfir AD (2011) Biochim Biophys Acta 181:513–535

    Google Scholar 

  13. Cai Z, McCaslin PP (1992) Neurochem Res 17:803–808

    Article  CAS  Google Scholar 

  14. Aronica E, Nicoletti F, Canonico PL (1990) Funct Neurol 5:15–20

    CAS  Google Scholar 

  15. Przewlocki R (2004) Eur J Pharmacol 500:331–349

    Article  CAS  Google Scholar 

  16. Sattler R, Rothstein JD (2006) Handbook of experimental pharmacology. Springer, Heidelberg, pp 277–303

    Google Scholar 

  17. Kawamata M, Omote K (1996) Pain 68:85–96

    Article  CAS  Google Scholar 

  18. Brown JA, Nijjar MS (1995) Mol Cell Biochem 151:49–54

    Article  CAS  Google Scholar 

  19. Aschner M, Mutkus LA, Allen JW (2001) Ann N Y Acad Sci 939:23–27

    Article  CAS  Google Scholar 

  20. Brodie MS, Scholz A, Weiger TM, Dopico AM (2007) Alcohol Clin Exp Res 31:1625–1632

    Google Scholar 

  21. Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, de Witte P, Ballini C, Corte LD, Dexter D (2009) J Neurochem 111(5):1119–1128

    Article  CAS  Google Scholar 

  22. Deng C, Li KY, Zhou C, Ye JH (2009) Neuropsychopharmacology 34(5):1233–1244

    Article  CAS  Google Scholar 

  23. Chefer V, Meis J, Wang G, Kuzmin A, Bakalkin G, Shippenberg T (2011) Addict Biol 16(2):229–237

    Article  CAS  Google Scholar 

  24. Santofimia-Castaño P, Salido GM, Gonzalez A (2011) Brain Res 1402:1–8

    Article  Google Scholar 

  25. Ding ZM, Engleman EA, Rodd ZA, McBride WJ (2012) Alcohol Clin Exp Res 36(4):633–640

    Article  CAS  Google Scholar 

  26. Jeong JS, Kim SK, Park SR (2012) Electrophoresis 33(14):2112–2121

    Article  CAS  Google Scholar 

  27. Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2009) Anal Bioanal Chem 393(2):445–452

    Article  CAS  Google Scholar 

  28. Ou G, Feng X, Du W, Liu X, Liu BF (2013) Anal Bioanal Chem. doi:10.1007/s00216-013-6830-4

    Google Scholar 

  29. Hyzinski-Garcia MC, Vincent MY, Haskew-Layton RE, Dohare P, Keller RW Jr, Mongin AA (2011) J Neurochem 118:140–152

    Article  CAS  Google Scholar 

  30. Kuribayashi K, Kitaoka Y, Kumai T, Munemasa Y, Kitaoka Y, Isenoumi K, Motoki M, Kogo J, Hayashi Y, Kobayashi S, Ueno S (2006) Brain Res 1071:34–41

    Article  CAS  Google Scholar 

  31. Sarchielli P, Alberti A, Floridi A, Gallai V (2002) J Neurol Sci 198:9–15

    Article  CAS  Google Scholar 

  32. O'Shea TJ, Weber PL, Bammel BP, Lunte CE, Lunte SM, Smyth MR (1992) J Chromatogr 608:189–195

    Article  Google Scholar 

  33. Li H, Yan ZY (2010) Biomed Chromatogr: BMC 24:1185–1192

    Article  CAS  Google Scholar 

  34. Vyas CA, Rawls SM, Raffa RB, Shackman JG (2011) J Pharmacol Toxicol Methods 63:119–122

    Article  CAS  Google Scholar 

  35. Wang C, Zhao S, Yuan H, Xiao D (2006) Analytical technologies in the biomedical and life sciences. J Chromatogr B 833:129–134

    Article  CAS  Google Scholar 

  36. Kristensen HT (1998) J Pharm Biomed Anal 18:827–838

    Article  CAS  Google Scholar 

  37. Cellar NA, Burns ST, Meiners JC, Chen H, Kennedy RT (2005) Anal Chem 77:7067–7073

    Article  CAS  Google Scholar 

  38. Rathnasingham R, Kipke DR, Bledsoe SC Jr, McLaren JD (2004) IEEE Trans Bio-med Eng 51:138–145

    Article  Google Scholar 

  39. Zhao S, Li X, Liu YM (2009) Anal Chem 81:3873–3878

    Article  CAS  Google Scholar 

  40. Li X, Zhao S, Liu YM (2013) J Chromatogr A (in press). doi: 10.1016/j.chroma.2013.02.031

  41. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Science 288:113–116

    Article  CAS  Google Scholar 

  42. Otter DE (2012) Br J Nutr 108(Suppl 2):S230–S237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from US NIH (GM089557 to YML and G12MD007581-15 to PBT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Xiao or Yi-Ming Liu.

Additional information

Published in the topical collection Amino Acid Analysis with guest editor Toshimasa Toyo'oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Xiao, D., Sanders, T. et al. Fast quantification of amino acids by microchip electrophoresis–mass spectrometry. Anal Bioanal Chem 405, 8131–8136 (2013). https://doi.org/10.1007/s00216-013-7260-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7260-z

Keywords

Navigation