Skip to main content
Log in

Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coarse (PMCoarse, particles between 2.5 and 10 μm AD) mass concentrations and composition. The measurements represent the first extended particulate matter measurements in the northern Tien-Shan region of Central Asia. A sun photometer (Microtops II) was used to measure AOD from the surface, which is a widely used aerosol monitoring technique that is used in the AERONET network. In parallel, less routine measurements of continuous hourly PM2.5 data were obtained with the TEOM/FDMS whereas daily average PM2.5 and PM10 were obtained using URG-3000ABC samplers. Daily samples were collected on an every-other-day basis throughout the year. Since clouds interfere with the AOD measurement, a cloud screening procedure based on LIDAR measurements was applied to the AOD data and cloud impacted days were removed from the AOD data set. Depending on the season, the correlation coefficient (r) varied from 0.56 up to 0.87. Higher correlation coefficients between PM2.5 mass and AOD were observed during the spring and autumn periods and appeared to result from the transport of Asian dust (desert crustal material) particles from outside the area. One of the main source areas was the Taklimakan desert located in northwestern China. Linear regression results between AOD and PM2.5 are presented that allow for an estimate of PM2.5 mass concentrations at the surface based on the AOD data, which can be used to help interpret AOD measurements made in Central Asia and potentially other regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen BB, Sverdlik LG, Kozlov PV (2004). Optics and microphysics of atmospheric aerosol. Bishkek, 222 P

  • Christensen JH (1997) The Danish Eulerian hemispheric model—a three-dimensional air pollution model used for the arctic. Atmos Environ 31:4169–4191

    Article  CAS  Google Scholar 

  • Dinoi A, Perrone MR, Burlizzi P (2010) Application of MODIS products for air quality studies over Southeastern Italy. Remote Sens 2:1767–1796. doi:10.3390/rs2071767

    Article  Google Scholar 

  • Draxler R, Hess G (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349

    Article  Google Scholar 

  • Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang XY, Tsay SC, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110, D06202

  • Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ 38:2495–2509

    Article  CAS  Google Scholar 

  • Federal Register (2006) National Ambient Air Quality Standards for Particulate Matter: Final Rule. 40 CFR Parts 50, 53, and 58, Volume 62 (138). Part 50: http://www.epa.gov/ttn/amtic/files/ambient/pm25/pt5006.pdf; Parts 53 and 58: http://www.epa.gov/ttn/amtic/files/ambient/pm25/092706sign.pdf, last accessed October 2, 2012

  • Fischer EV, Hsu NC, Jaffe DA, Jeong MJ, Gong SL (2009) A decade of dust: Asian dust and springtime aerosol load in the U.S. Pacific Northwest. Geophys Res Lett 36. doi:10.1029/2008GL036467, L03821, 5 PP

  • Gupta P, Christopher SA, Wang J, Gehrig R, Leed Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892

    Article  CAS  Google Scholar 

  • Heo J-B, Hopke PK, Yi S-M (2009) Source apportionment of PM2.5 in Seoul, Korea. Atmos Chem Phys 9:4957–4971

    Article  CAS  Google Scholar 

  • Hoff RM, Christopher SA (2009) Remote sensing of particulate pollution from space: have we reached the promised land? J Air Waste Manage Assoc 59:645–675

    Article  CAS  Google Scholar 

  • Husar RB, Tratt DM, Schichtel BA, Falke SR, Li F, Jaffe D, Gassó S, Gill T, Laulainen NS, Lu F, Reheis MC, Chun Y, Westphal D, Holben BN, Gueymard C, McKendry I, Kuring N, Feldman GC, McClain C, Frouin RJ, Merrill J, DuBois D, Vignola F, Murayama T, Nickovic S, Wilson WE, Sassen K, Sugimoto N, Malm WC (2001) The Asian dust events of April 1998. J Geophys Res 106(16):18317–18330

    Article  CAS  Google Scholar 

  • Ichoku C, Levy R, Kaufman YJ, Remer LA, Li R-R, Martins VJ, Holben BN, Abuhassan N, Slutsker I, Eck TF, Pietras C (2002) Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. J Geophys Res 107(D13):4179

    Article  Google Scholar 

  • IPCC: Intergovernmental Panel on Climate Change, Climate Change (2007) The scientific basis. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Kacenelenbogen M, Léon J-F, Chiapello I, Tanre D (2009) Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmos Chem Phys 6:4843–4849

    Article  Google Scholar 

  • Koelemeijer RBA, Schaap M, Timmermans RMA, Homan CD, Matthijsen J, Van de Kassteele J, Builtjes PGH (2006) Mapping aerosol concentrations and optical thickness over Europe—PARMA final report. MNP report 555034001, Bilthoven, the Netherlands

  • Kokhanovsky AA, Glantz P, von Hoyningen-Huene W, Burrows JP (2008) The determination of aerosol optical thickness and particulate matter concentration using satellite observations. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03005.

  • Kumar N, Chu A, Foster A (2007) An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos Environ 41:4492–4503

    Article  CAS  Google Scholar 

  • Kuśmierczyk-Michulec J (2010) Optical measurements of atmospheric aerosols in air quality monitoring. Air Quality—Models and Applications, Ch.9, 153–172

    Google Scholar 

  • Lee HN, Igarashi Y, Chiba M, Aoyama M, Hirose K, Tanaka T (2006) Global model simulations of the transport of Asian and Sahara Dust: total deposition of dust mass in Japan. Water Air Soil Pollut 169:137–166

    Article  CAS  Google Scholar 

  • Lee YC, Yang X, Wenig M (2010) Transport of dusts from East Asian and non-East Asian sources to Hong Kong during dust storm related events 1996–2007. Atmospheric Environment 44:3728–3738

    Article  CAS  Google Scholar 

  • Liu D, Wang Z, Liu Z, Winker D, Trepte C (2008) A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J Geophys Res 113:D16214

    Article  Google Scholar 

  • Matthias V, Bosenberg J (2002) Aerosol climatology for the planetary boundary layer derived from regular lidar measurements. Atmos Research 63:221–245

    Article  CAS  Google Scholar 

  • McKendry IG, Strawbridge KB, O’Neill NT, Macdonald AM, Liu PSK, Leaitch WR, Anlauf KG, Jaegle L, Fairlie TD, Westphal DL (2007) Trans-Pacific transport of Saharan dust to western North America: a case study. J Geophys Res 112. doi:10.1029/2006JD007129, D01103

  • Miller-Schulze JP, Shafer M, Schauer JJ, Solomon PA, Lantz JJ, Artamonova M, Chen B, Imashev S, Sverdlik L, Carmichael G, Deminter J (2011) Characteristics of fine particle carbonaceous aerosol at two remote sites in Central Asia. Atmos Environ 45(38):6955–6964

    Article  CAS  Google Scholar 

  • Mukai S, Sano I, Mukai M, Yasumoto M (2008) Evaluation of air quality from space. Proceedings of SPIE—The International Society for Optical Engineering 6745:67451X.1–67451X.8

    Google Scholar 

  • Natunen A, Arola A, Mielonen T, Huttunen J, Komppula M, Lehtinen KEJ (2010) A multi-year comparison of PM2.5 and AOD for the Helsinki region. Boreal Env Res 15:544–552

    CAS  Google Scholar 

  • Park CB, Sugimoto N, Matsui I, Shimizu A, Tatarov B, Kamei A, Lee CH, Uno I, Takemura T, Westphal DL (2005) Long-range transport of Saharan dust to East Asia observed with Lidars. SOLA 1:121–124

    Article  Google Scholar 

  • Pelletier B, Santer R, Vidot J (2007) Retrieving of particulate matter from optical measurements: a semiparametric approach. J Geophys Res 112. doi:10.1029/2005JD006737, D06208

  • Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Qu WJ, Arimoto R, Zhang XY, Zhao CH, Wang YQ, Sheng LF, Fu G (2010) Spatial distribution and interannual variation of surface PM10 concentrations over eighty-six Chinese cities. Atmos Chem Phys 10:5641–5662

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Atmosphere—aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  CAS  Google Scholar 

  • Rodriguez S, Alastuey A, Alonso-Perez S, Querol X, Cuevas E, Abreu-Afonso J, Viana M, Perez N, Pandolfi M, de la Rosa J (2011) Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos Chem Phys 11:6663–6685

    Article  CAS  Google Scholar 

  • Schaap M, Apituley A, Timmermans RMA, Koelemeijer RBA, De Leeuw G (2009) Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos Chem Phys 9:909–925

    Article  CAS  Google Scholar 

  • Smirnov A, Holben BN, Slutsker I, Giles DM, McClain CR, Eck TF, Sakerin SM, Macke A, Croot P, Zibordi G, Quinn PK, Sciare J, Kinne S, Harvey M, Smyth TJ, Piketh S, Zielinski T, Proshutinsky A, Goes JI, Nelson NB, Larouche P, Radionov VF, Goloub P, Krishna Moorthy K, Matarrese R, Robertson EJ, Jourdin F (2009) Maritime Aerosol Network as a component of Aerosol Robotic Network. J Geophys Res 114:D06204

    Article  Google Scholar 

  • Solomon PA (2011) Air pollution and health: bridging the gap from sources to health outcomes. Environ Health Perspect 119(4):156–157

    Article  Google Scholar 

  • Solomon PA, Sioutas C (2008) Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA’s particulate matter supersites program and related studies. J Air Waste Manage Assoc 58(2):164–195

    Article  CAS  Google Scholar 

  • Soni K, Singh S, Bano T, Tanwar RS, Nath S (2011) Wavelength dependence of the aerosol angstrom exponent and its implications over Delhi, India. Aerosol Sci Technol 45(12):1488–1498

    Article  CAS  Google Scholar 

  • United Nations Environment Programme: Global Deserts Outlook (2006) UNEP Job No. DEW/0839/NA

  • Uno I, Yumimoto K, Shimizu A, Hara Y, Sugimoto N, Wang Z, Liu Z, Winker DM (2008) 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model. Geophys Res Lett 35, L06803. doi:10.1029/2007GL032329

  • Van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2009) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118(6):847–855

    Article  Google Scholar 

  • Wang J, Christopher SA (2003) Intercomparison between satellite derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys Res Lett 30(21):2095

    Article  Google Scholar 

  • Wang Z, Chen L, Tao J, Zhang Y, Su L (2010) Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sens Environ 114:50–63

    Article  Google Scholar 

  • Zhang H, Hoff RM, Engel-Cox JA (2009) The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by U.S. Environmental Protection Agency regions. J Air Waste Manag Assoc 59:1358–1369. doi:10.3155/1047-3289.59.11.1358

    Article  Google Scholar 

Download references

Acknowledgments

The U.S. Environmental Protection Agency through its Office of Research and Development funded this study and collaborated in the research described here under Contract EP-D-06-001 to Pechan and Associates and as a component of the International Science & Technology Center (ISTC) project # 3715 (Transcontinental Transport of Air Pollution from Central Asia to the US), the latter funded by EPA’s Office of International and Tribal Affairs and the Office of Science Policy. It has been subject to Agency review and approved for publication. Mention of trade names or commercial products does not constitute endorsement, certification, or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B.B., Sverdlik, L.G., Imashev, S.A. et al. Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia. Air Qual Atmos Health 6, 385–396 (2013). https://doi.org/10.1007/s11869-012-0192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-012-0192-5

Keywords

Navigation