Skip to main content
Log in

The Padé interpolation method applied to additive difference Painlevé equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study Padé interpolation problems on an additive grid, related to additive difference (d-) Painlevé equations of type \(E_7^{(1)}\), \(E_6^{(1)}\), \(D_4^{(1)}\) and \(A_3^{(1)}\). By choosing suitable Padé problems, we can derive time evolution equations, scalar Lax pairs of contiguous type and determinant formulae of special solutions given in terms of hypergeometric functions, for the corresponding d-Painlevé equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Some q-Painlevé equations, such as a second-order case of the system [16] (see also [42]), do not belong to the list of discrete Painlevé equations appearing in [39].

  2. \(P_\mathrm{III}^{D_i^{(1)}}\) symbolizes \(P_\mathrm{III}\) having the surface connected to the affine root system of type \(D_i^{(1)}\).

  3. Recently it has been shown in [20,21,22, 30] that Hermite–Padé approximation is related to the continuous Garnier system.

  4. The Padé interpolation (Cauchy 1821, Jacobi 1846) is older than the Padé approximation (Padé 1892).

  5. The theory of semiclassical orthogonal polynomials give more general solutions of Painlevé/Garnier systems and the Padé method is simpler to compute. For example, their relation was briefly proved in [47].

  6. The given functions Y(x) are interpolated by rational functions of given order. However, Y(x) need not be rational functions.

  7. The set of all linear combinations of these two solutions, i.e., \(y(x)=A P_m(x)+BY(x)Q_n(x)\) where A and B are constants are all solutions to the two linear relations \(L_2(x)=0\) and \(L_3(x)=0\).

  8. General Padé interpolation problems have been formulated and some universal determinant formulae for the solutions have been proposed in [32].

References

  1. Arinkin, D., Borodin, A.: Moduli spaces of \(d\)-connections and difference Painlevé equations. Duke Math. J. 134(2), 515–556 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bailey, W.N.: Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 32. Cambridge University Press, Cambridge (1935)

    Google Scholar 

  3. Boalch, P.: Quivers and difference Painlevé equations. Groups and symmetries. CRM Proc. Lect. Notes 47, 25–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarkson, P.A.: Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations. J. Phys. A 46(18), 185205–185222 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Conte, R.: The Painlevé Property-One Century Later. CRM Series in Mathematical Physics, Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  6. Dzhamay, A., Sakai, H., Takenawa, T.: Discrete Hamiltonian Structure of Schlesinger Transformations. arXiv:1302.2972 [math-ph]

  7. Dzhamay, A., Takenawa, T.: Geometric analysis of reductions from Schlesinger transformations to difference Painlevé equations. arXiv:1408.3778 [math-ph]

  8. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs, vol. 34. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  9. Fuchs, R.: Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegene wesentlich singul ären Stellen. Math. Ann. 63, 301–321 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gasper, G., Rahman, M.: Basic Hypergeometric Series with a Foreword by Richard Askey. Encyclopedia of Mathematics and its Applications, vol. 96, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Grammaticos, B., Ohta, Y., Ramani, A., Sakai, H.: Degeneration through coalescence of the \(q\)-Painlevé VI equations. J. Phys. A Math. Gen. 31(15), 3545–3558 (1998)

    Article  ADS  MATH  Google Scholar 

  12. Ikawa, Y.: Hypergeometric solutions for the \(q\)-Painlevé Equation of Type \(E_6^{(1)}\) by the Padé method. Lett. Math. Phys. 103(7), 743–763 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé—A Modern Theory of Special Functions, Aspects of Mathematics, E16. Vieweg, Berlin (1991)

    Book  MATH  Google Scholar 

  14. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II. Physica D 2, 407–448 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kajiwara K.: Hypergeometric solutions to the additive discrete Painlevé equations with affine Weyl group symmetry of type E. Reports of Research Institute for Applied Mechanics Symposium, No. 19MES2, No.3 (2008)

  16. Kajiwara, K., Noumi, M., Yamada, Y.: Discrete dynamical systems with W(\(A_{m-1}^{(1)} \times A_{n-1}^{(1)}\)) symmetry. Lett. Math. Phys. 60(3), 211–219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kajiwara, K., Noumi, M., Yamada, Y.: Geometric aspects of Painlevé equations. J. Phys. A Math. Theor. 50, 073001 (2017)

    Article  ADS  MATH  Google Scholar 

  18. Koekoek R., Swarttouw R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Department of Technical Mathematics and Informatics Report 1–170 (1998)

  19. Magnus, A.: Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57, 215–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mano, T.: Determinant formula for solutions of the Garnier system and Padé approximation. J. Phys. A Math. Theor. 45, 135206–135219 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mano, T., Tsuda, T.: Two approximation problems by Hermite and the Schlesinger transformations (Japanese). RIMS Kokyuroku Bessatsu B47, 77–86 (2014)

    MATH  Google Scholar 

  22. Mano, T., Tsuda, T.: Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral. Math. Z. 285(1–2), 397–431 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matano, T., Matumiya, A., Takano, K.: On some Hamiltonian structures of Painlevé systems II. J. Math. Soc. Japan 51, 843–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nagao, H.: The Padé interpolation method applied to \(q\)-Painlevé equations. Lett. Math. Phys. 105(4), 503–521 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Nagao H.: Lax pairs for additive difference Painlevé equations. arXiv:1604.02530 [nlin.SI]

  26. Nagao, H.: The Padé interpolation method applied to \(q\)-Painlevé equations II (differential grid version). Lett. Math. Phys. 107(1), 107–127 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Nagao, H.: A Variation of the \(q\)-Painlevé system with Affine Weyl Group symmetry of type \(E_7^{(1)}\). SIGMA 13, 092 (2017)

    MATH  Google Scholar 

  28. Nagao, H., Yamada, Y.: Study of \(q\)-Garnier system by Padé method. Funkcial. Ekvac. 61, 109–133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagao, H., Yamada, Y.: Variations of the \(q\)-Garnier system. J. Phys. A Math. Theor. 51, 135204 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Nagao, H., Yamada, Y.: Padé methods for Painlevé equations. Math. Phys. 42, 98 (2021)

    MATH  Google Scholar 

  31. Nakazono, N.: Solutions to discrete Painlevé systems arising from two types of orthogonal polynomials. Rep. RIAM Symp. 23(AOS7), 35–41 (2013)

    Google Scholar 

  32. Noumi, M.: Padé Interpolation and Hypergeometric Series. Contemporary Mathematics, vol. 651. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  33. Noumi, M., Tsujimoto, S., Yamada, Y.: Padé interpolation for elliptic Painlevé equation. Symmetries, integrable systems and representations. Proc. Math. Stat 40, 463–482 (2013)

    MATH  Google Scholar 

  34. Ohta, Y., Ramani, A., Grammaticos, B.: An affine Weyl group approach to the eight-parameter discrete Painlevé equation. J. Phys. A 34, 10523–10532 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Okamoto, K.: Sur les feuilletages associés aux équations du second ordre á points critiques fixés de P. Painlevé. Japan J. Math. 5, 1–79 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ormerod, C.M., Rains, E.M.: Commutation relations and discrete Garnier systems. SIGMA 12, 110 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Ormerod, C.M., Witte, N.S., Forrester, P.J.: Connection preserving deformations and q-semi-classical orthogonal polynomials. Nonlinearity 24, 2405–2434 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ramani, A., Grammaticos, B., Tamizhmani, T., Tamizhmani, K.M.: Special function solutions of the discrete Painlevé equations. Comput. Math. Appl. 42(3–5), 603–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sakai, H.: Rational surfaces with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220, 165–221 (2001)

    Article  ADS  MATH  Google Scholar 

  40. Sakai H.: Problem: discrete Painlevé equations and their Lax forms (English summary). Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies, pp. 195–208. RIMS Kokyuroku Bessatsu B2. Res. Inst. Math. Sci. (RIMS), Kyoto (2007)

  41. Shioda, T., Takano, K.: On some Hamiltonian structures of Painlevé systems I. Funkcial. Ekvac. 40, 271–291 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Takenawa, T.: Weyl group symmetry of type \(D_5^{(1)}\) in the \(q\)-Painlevé V equation. Funkcialaj Ekvacoj 46, 173–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Van, W.A.: Discrete Painlevé Equations for Recurrence Coefficients of Orthogonal Polynomials Difference Equations, Special Functions and Orthogonal Polynomials, pp. 687–725. World Sci. Publ., Hackensack (2007)

    MATH  Google Scholar 

  44. Witte, N.S.: Biorthogonal systems on the unit circle, regular semiclassical weights, and the discrete Garnier equations. IMRN 6, 988–1025 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Witte, N.S.: Semiclassical orthogonal polynomial systems on nonuniform lattices, deformations of the Askey table, and analogues of isomonodromy. Nagoya Math. J. 219, 127–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Witte, N.S., Ormerod, C.M.: Construction of a Lax pair for the \(E_6^{(1)}\)\(q\)-Painlevé system. SIGMA 8, 097–123 (2012)

    MATH  Google Scholar 

  47. Yamada, Y.: Padé method to Painlevé equations. Funkcial. Ekvac. 52, 83–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yamada, Y.: A Lax formalism for the elliptic difference Painlevé equation. SIGMA 5, 042 (2009)

    MATH  Google Scholar 

  49. Yamada, Y.: Lax formalism for \(q\)-Painlevé equations with affine Weyl group symmetry of type \(E^{(1)}_n\). IMRN 17, 3823–3838 (2011)

    MATH  Google Scholar 

  50. Yamada, Y.: A simple expression for discrete Painlevé equations. RIMS Kokyuroku Bessatsu B 47, 087–095 (2014)

  51. Yamada, Y.: A elliptic Garnier system from interpolation. SIMGA B 13, 69–77 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor Yasuhiko Yamada for valuable discussions on this research. He also thanks Professor Kenji Kajiwara for stimulating comments. This work was partially supported by JSPS KAKENHI (19K14579) and Expenses Revitalizing Education and Research of Akashi College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehito Nagao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Sufficiency for the compatibility of the Lax pair

Appendix A. Sufficiency for the compatibility of the Lax pair

In Sect. 3.1, we gave the d-\(E_7^{(1)}\) equation (3.7) as the necessary condition for the compatibility of the Lax pair (3.10). In this appendix, we prove that the d-\(E_7^{(1)}\) equation is the sufficient condition for the compatibility of the Lax pair.

As in Fig. 3, eliminating \(\overline{y}(x)\) and \(\overline{y}(x-1)\) from \(L_2(x)= L_2(x-1)=L_3(x)=0\) (3.6), one constructs the linear equation \(L_1=0\) among \(y(x+1)\), y(x) and \(y(x-1)\), where

$$\begin{aligned} \displaystyle L_1(x)= & {} \frac{(x-a_0-b_0)\prod _{i=1}^3(x+a_i)}{x-f}y(x+1)+\frac{x\prod _{i=1}^3(x+b_i-1)}{(x-f-1)}y(x-1)\nonumber \\&\displaystyle -\frac{1}{x-h}\Big [\frac{A_2(x)(x-g)}{x-f}+\frac{V(x-1)}{(x-f-1)(x-g-1)}\Big ]y(x) \end{aligned}$$
(A.1)

and

$$\begin{aligned} V(x)=(x-h)(x-h+1)A_1(x)-C_0C_1(x-f)(x-\overline{f}). \end{aligned}$$
(A.2)

Here, the variable \(\overline{f}\) and the product \(C_0C_1\) in (A.2) should be viewed as functions in terms of f and g, and they are determined in (3.7) and (3.8), respectively. Expression \(L_1\) (A.1) is rewritten into (3.10) by using (3.7) and (3.8).

Lemma A.1

The expression \((x-f)(x-f-1)L_1(x)\) (A.1) (or (3.10)) has the following characterization:

(i) It is a linear equation among \(y(x+1)\), y(x) and \(y(x-1)\), and the coefficients of these terms are polynomials of degree 5 in x.

(ii) The coefficients of \(y(x+1)\) (resp. \(y(x-1)\)) have zeros at \(x=-a_1\),\(-a_2\),\(-a_3\), \(a_0+b_0\) (resp. \(x=-b_1+1\),\(-b_2+1\), \(-b_3+1\), 0).

(iii) Under the conditions

$$\begin{aligned}&\displaystyle \frac{y(x+1)}{y(x)}=1+\frac{a_0}{x}+\frac{a_0(a_0-1)/2}{x^2}+\frac{w}{x^3} +O\Big (\frac{1}{x^4}\Big ),\nonumber \\&\quad \displaystyle \frac{y(x-1)}{y(x)}=1-\frac{a_0}{x}+\frac{a_0(a_0-1)/2}{x^2}-\frac{w}{x^3}+O\Big (\frac{1}{x^4}\Big ), \end{aligned}$$
(A.3)

the terms \(x^5, \ldots , x^2\) in the expression \((x-f)(x-f-1)L_1(x)\) vanish, namely \((x-f)(x-f-1)L_1(x)=O(x^1)\) around \(x=\infty \). Here, \(w \in {\mathbb {C}}\) is an arbitrary constant.

(iv) The equation \((x-f)(x-f-1)L_1=0\) holds at the two points \(x=f, f+1\), where

$$\begin{aligned} {\displaystyle \frac{y(f+1)}{y(f)}} ={\displaystyle \frac{(f+b_1)(f+b_3)(f-g)}{(f+a_2)(f-a_0-b_0)(f-h)}}. \end{aligned}$$
(A.4)

Conversely, the expression \((x-f)(x-f-1)L_1(x)\) is uniquely characterized by these properties \((i)-(iv)\). \(\square \)

Proof

The property (i) is obtained by relations (3.8). Concretely, the expression \(\frac{V(x-1)}{x-g-1}\) reduces to a polynomial of degree 5 in x under the first relation of (3.8). Moreover, the coefficient of the term y(x) is obtained as a polynomial of degree 5 in x by using the second relation of (3.8). The property (ii) is trivial. The property (iii) can easily be checked by condition (A.3). The property (iv) follows by substituting \(x=f, f+1\) into the equation \(L_1(x)=0\). \(\square \)

Remark A.2

Two points \(x=f, f+1\) are apparent singularities in the sense that at those two points the equation \((x-f)(x-f-1)L_1(x)=0\) (A.1) is satisfied under the same condition (in this case (A.4)). \(\square \)

Similarly, as in Fig. 4, eliminating y(x) and \(y(x+1)\) from \(L_2(x)= L_3(x)=L_3(x+1)=0\) (3.6), we obtain the linear equation \(L_1^*=0\) among \(\overline{y}(x+1)\), \(\overline{y}(x)\) and \(\overline{y}(x-1)\), where

$$\begin{aligned} \displaystyle L_1^*(x)= & {} \frac{(x-a_0-b_0)(x+a_1+1)(x+a_2)(x+a_3+1)}{x-\overline{f}}\overline{y}(x+1)\nonumber \\&\displaystyle +\frac{x(x+b_1)(x+b_2-1)(x+b_3)}{(x-\overline{f}-1)}\overline{y}(x-1)\nonumber \\&\displaystyle -\frac{1}{x-h}\Big [\frac{A_2(x)(x-g-1)}{x-\overline{f}-1}+\frac{V(x)}{(x-\overline{f})(x-g)}\Big ]y(x). \end{aligned}$$
(A.5)
Fig. 4
figure 4

Derivation of \(L_1^*(x)\)

The following Lemma (and its proof) is similar to Lemma A.1.

Lemma A.3

The expression \((x-\overline{f})(x-\overline{f}-1)L_1^*(x)\) (A.5) has the following characterization:

(i) It is a linear three term expression among \(\overline{y}(x+1)\) and \(\overline{y}(x)\) and \(\overline{y}(x-1)\), and the coefficients of these terms are polynomials of degree 5 in x.

(ii) The coefficients of \(\overline{y}(x+1)\) (resp. \(\overline{y}(x-1)\)) have zeros at \(x=-a_1-1\),\(-a_2\),\(-a_3-1\), \(a_0+b_0\) (resp. \(x=-b_1\),\(-b_2+1\), \(-b_3\), 0).

(iii) Under the conditions

$$\begin{aligned}&\displaystyle \frac{\overline{y}(x+1)}{\overline{y}(x)}=1+\frac{a_0}{x} +\frac{\overline{a}_0(a_0-1)/2}{x^2}+\frac{\overline{w}}{x^3}+O\Big (\frac{1}{x^4}\Big ),\nonumber \\&\quad \displaystyle \frac{\overline{y}(x-1)}{\overline{y}(x)}=1-\frac{a_0}{x} +\frac{a_0(a_0-1)/2}{x^2}-\frac{\overline{w}}{x^3}+O\Big (\frac{1}{x^4}\Big ), \end{aligned}$$
(A.6)

the terms \(x^5, \ldots , x^2\) in the expression \((x-\overline{f})(x-\overline{f}-1)L_1^*(x)\) vanish, namely \((x-\overline{f})(x-\overline{f}-1)L_1^*(x)=O(x^1)\) around \(x=\infty \). Here, \(w \in {\mathbb {C}}\) is the same arbitrary constant as in (A.3).

(iv) The equation \((x-\overline{f})(x-\overline{f}-1)L_1^*=0\) holds at the two points \(x=\overline{f}, \overline{f}+1\) where

$$\begin{aligned} {\displaystyle \frac{\overline{y}(\overline{f}+1)}{\overline{y}(\overline{f})}} ={\displaystyle \frac{(\overline{f}+b_2)(\overline{f}+1)(\overline{f}+h-1)}{(\overline{f}+a_1+1)(\overline{f}+a_3+1)(\overline{f}-g)}}. \end{aligned}$$
(A.7)

Conversely, the expression \((x-\overline{f})(x-\overline{f}-1)L_1^*(x)\) is uniquely characterized by these properties \((i)-(iv)\). \(\square \)

The sufficiency for the compatibility means that \(T(L_1(x))\propto L_1^*(x)\) holds when the d-\(E_7^{(1)}\) equation (3.7) is satisfied. In order to prove the sufficiency, we characterize \(L_1\) and \(L_1^*\) as polynomials in terms of x, and compare these characterizations.

Proposition A.4

The linear equations \(L_1=0\) and \(L_2=0\) (3.10) for the unknown function y(x) are compatible if and only if the d-\(E_7^{(1)}\) equation (3.7) is satisfied. \(\square \)

Proof

The compatibility means that the shift operator T changes the equation \(L_1=0\) into the equation \(L_1^{*}=0\), i.e., the commutativity in Fig. 5.

Fig. 5
figure 5

Compatibility of \(L_1(x)\) and \(L_1^*(x)\)

This commutativity is almost clear from the characterizations (i), (ii) of the equation \(L_1=0\) (respectively \(L_1^*=0\)) in Lemma A.1 (respectively Lemma A.3). The remaining task is to check that the operator T changes expression (A.4) into expression (A.7), utilizing the characterization (iii) of the equation \(L_1=0\) (respectively \(L_1^*=0\)) and the first part of equation (3.7). \(\square \)

As the point of the proof, the following two are applied to type d-\(E_7^{(1)}\) together: The first is that the equation \(L_1(f,\overline{f}, g)=0\) in terms of f, \(\overline{f}\) and g is derived from the equations \(L_2(f,g)=0\) and \(L_3(\overline{f},g)=0\) (see [17, 33, 48, 49]). The second is that the equation \(L_1(f,\overline{f}, g)=0\) is characterized as a polynomial in terms of x (see [25, 28]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, H. The Padé interpolation method applied to additive difference Painlevé equations. Lett Math Phys 111, 135 (2021). https://doi.org/10.1007/s11005-021-01477-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01477-z

Keywords

Mathematics Subject Classification

Navigation