Skip to main content
Log in

Ectohydrolytic enzyme activities of bacteria associated with Orbicella annularis coral

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Ectohydrolytic enzyme activity (EEA) potential of 37 bacterial isolates derived from Orbicella annularis coral and 2 coral pathogens (Vibrio shilonii and V. coralliilyticus) was measured as model to infer the role of bacteria in organic matter processing within coral reef ecosystems. Bacterial cell-specific activities of eight enzyme types were measured after incubation in organic matter enriched and unenriched filtered seawater. Max value of activities of alkaline phosphatase, oleate-lipase, stearate-lipase and proteinase were 769.3, 327.6, 82.9 and 36.7 amol cell−1 h−1, respectively. Chitinase, α-mannosidase, α-glucosidase and β-glucosidase were generally lower by comparison (max 4.7–20.7 amol cell−1 h−1). No “super” isolates (bacteria expressing high levels of all ectohydrolases) were found suggesting a “specialization” among individual bacterial strains. Cumulatively, the 39 isolates tested displayed a broad range of cell-specific enzyme activities in both organic matter conditions. Culture-independent measurement of coral mucus layer EEA in O. annularis off a Panama reef showed comparable EEA patterns and diversity as the isolates. Volume-specific EEAs of all enzymes except alkaline phosphatase were 8–48 times higher in mucus than in surrounding seawater (SSW) samples. However, cell-specific EEAs in mucus were generally lower than in the SSW partly due to more abundant cells in the mucus than in SSW. For field samples, ≥ 85% of proteinase was cell-bound, while lipase was preferentially dissolved (40–96%). In general, the production of dissolved EEAs varied among measurements depending on sample source and enzyme types, suggesting a potential role of ectoenzyme size distribution in linking the whole reef ecosystem. Our findings support that the cumulative ectoenzyme expression (“ectoenzymome”) of the coral microbiome has the potential to maintain the functional resilience of the coral holobiont and response to stress through its contribution to organic matter processing within coral reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaki C, Duke GE (1999) Apparent chitin digestibilities in the Eastern screech owl (Otus asio) and the American kestrel (Falco sparverius). J Exp Zool 283:387–393

    Article  Google Scholar 

  • Arnosti C (2008) Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates. FEMS Microbiol Ecol 66:343–351

    Article  CAS  PubMed  Google Scholar 

  • Arnosti C, Ziervogel K, Ocampo L, Ghobrial S (2009) Enzyme activities in the water column and in shallow permeable sediments from the northeastern Gulf of Mexico. Estuar Coast Shelf Sci 84:202–208

    Article  CAS  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–695

    Article  CAS  Google Scholar 

  • Bak RP, Joenje M, De Jong I, Lambrechts D, Nieuwland G (1998) Bacterial suspension feeding by coral reef benthic organisms. Mar Ecol Prog Ser 175:285–288

    Article  Google Scholar 

  • Barott KL, Rodriguez-Brito B, Janouškovec J, Marhaver KL, Smith JE, Keeling P, Rohwer FL (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol 13:1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Bednarz VN, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C (2017) The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio 8:e02058

  • Benavides M, Bednarz VN, Ferrier-Pagès C (2017) Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front Mar Sci 4:10

    Article  Google Scholar 

  • Bender J, Flieger A (2010) Lipases as pathogenicity factors of bacterial pathogens of humans. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 3241–3258

    Chapter  Google Scholar 

  • Ben-Haim Y, Thompson F, Thompson C, Cnockaert M, Hoste B, Swings J, Rosenberg E (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  CAS  PubMed  Google Scholar 

  • Böer S, Arnosti C, Van Beusekom J, Boetius A (2009) Temporal variations in microbial activities and carbon turnover in subtidal sandy sediments. Biogeosciences 6:1149–1165

    Article  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363

    Article  CAS  PubMed  Google Scholar 

  • Ceh J, Kilburn MR, Cliff JB, Raina JB, Keulen M, Bourne DG (2013) Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol 3:2393–2400

    Article  Google Scholar 

  • Chróst RJ (1990) Microbial ectoenzymes in aquatic environments. In: Overbeck J, Chróst RJ (eds) Aquat Microb Ecol. Springer, New York, pp 47–78

    Chapter  Google Scholar 

  • Cotner J, Ammerman J, Peele E, Bentzen E (1997) Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquat Microb Ecol 13:141–149

    Article  Google Scholar 

  • D’Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C (2014) Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J 8:2167–2179

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  CAS  PubMed  Google Scholar 

  • Douglas NL, Mullen KM, Talmage SC, Harvell CD (2007) Exploring the role of chitinolytic enzymes in the sea fan coral, Gorgonia ventalina. Mar Biol 150:1137–1144

    Article  CAS  Google Scholar 

  • Edmunds P (2015) A quarter-century demographic analysis of the Caribbean coral, Orbicella annularis, and projections of population size over the next century. Limnol Oceanogr 60:840–855

    Article  Google Scholar 

  • Ezzat L, Maguer J-F, Grover R, Ferrier-Pagès C (2016) Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci Rep 6:1–11

    Article  Google Scholar 

  • Garren M, Azam F (2010) New method for counting bacteria associated with coral mucus. Appl Environ Microbiol 76:6128–6133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinot C, Ferrier-Pagès C, Grover R (2009) Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 54:1627–1633

    Article  Google Scholar 

  • Godinot C, Ferrier-Pagès C, Sikorski S, Grover R (2013) Alkaline phosphatase activity of reef-building corals. Limnol Oceanogr 58:227–234

    Article  CAS  Google Scholar 

  • Guillemette R, Kaneko R, Blanton J, Tan J, Witt M, Hamilton S, Allen EE, Medina M, Hamasaki K, Koch BP, Azam F (2018) Bacterioplankton drawdown of coral mass-spawned organic matter. ISME J 12:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadaidi G, Gegner HM, Ziegler M, Voolstra CR (2019) Carbohydrate composition of mucus from scleractinian corals from the central Red Sea. Coral Reefs 38:21–27

    Article  Google Scholar 

  • Hatcher BG (1988) Coral reef primary productivity: a beggar’s banquet. Trends Ecol Evol 3:106–111

    Article  CAS  PubMed  Google Scholar 

  • Hedges JI (1992) Global biogeochemical cycles: progress and problems. Mar Chem 39:67–93

    Article  CAS  Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. Mbio 7:e00560-e1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD (2018) Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. Mbio 9:e00812-00818

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera-Estrella A, Chet I (1999) Chitinases in Biological Control EXS-BASEL 87:171–184

    CAS  Google Scholar 

  • Hoarfrost A, Arnosti C (2017) Heterotrophic extracellular enzymatic activities in the atlantic ocean follow patterns across spatial and depth regimes. Front Mar Sci 4:200

    Article  Google Scholar 

  • Hoppe HG (1993) Use of fluorogenic model substances for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Kemp KF, Sherr BF, Cole JJ, Sherr EB (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 423–431

    Google Scholar 

  • Hoppe H-G, Kim S-J, Gocke K (1988) Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Appl Environ Microbiol 54:784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaus JS, Janse I, Heikoop JM, Sanford RA, Fouke BW (2007) Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. Environ Microbiol 9:1291–1305

    Article  CAS  PubMed  Google Scholar 

  • Kohn AJ (2002) World Atlas of Coral Reefs. Integr Comp Biol 42:408–408

    Article  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396–396

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Davy SK, Tang S-L, Kench PS (2016) Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front Microbiol 7:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308–323

    PubMed  Google Scholar 

  • Levitan DR, Boudreau W, Jara J, Knowlton N (2014) Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar Ecol Prog Ser 515:1–10

    Article  Google Scholar 

  • Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA (2018) Function and functional redundancy in microbial systems. Nature Ecology & Evolution 2:936–943

    Article  Google Scholar 

  • Mahaffey C, Reynolds S, Davis CE, Lohan MC (2014) Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments. Front Mar Sci 1:73

    Article  Google Scholar 

  • Malfatti F, Lee C, Tinta T, Pendergraft MA, Celussi M, Zhou Y, Sultana CM, Rotter A, Axson JL, Collins DB (2019) Detection of active microbial enzymes in nascent sea spray aerosol: Implications for atmospheric chemistry and climate. Environ Sci Technol Lett 6:171–177

    Article  CAS  Google Scholar 

  • Mao-Jones J, Ritchie KB, Jones LE, Ellner SP (2010) How microbial community composition regulates coral disease development. PLoS Biol 8:e1000345

  • Martinez J, Smith DC, Steward GF, Azam F (1996) Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat Microb Ecol 10:223–230

    Article  Google Scholar 

  • Meikle P, Richards G, Yellowlees D (1988) Structural investigations on the mucus from six species of coral. Mar Biol 99:187–193

    Article  CAS  Google Scholar 

  • Naher L, Tan SG, Yusuf UK, Ho CL, Siddiquee S (2012) Activities of chitinase enzymes in the oil palm (Elaeis guineensis Jacq.) in interactions with pathogenic and non-pathogenic fungi. Plant Omics 5:333–336

    CAS  Google Scholar 

  • Ochsenkühn MA, Schmitt-Kopplin P, Harir M, Amin SA (2018) Coral metabolite gradients affect microbial community structures and act as a disease cue. Commun Biol 1:1–10

    Article  Google Scholar 

  • Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ (2020) Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8:1–16

    Google Scholar 

  • Peng G, Xue J, Liu W, Xie Y (2009) Role of protease and chitinase of Verticillium lecanii in infecting scale insect cuticle. Chin J Appl Environ Biol 15:220–225

    CAS  Google Scholar 

  • Porter KG (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Pruzzo C, Vezzulli L, Colwell RR (2008) Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410

    Article  CAS  PubMed  Google Scholar 

  • Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497

    Article  PubMed  Google Scholar 

  • Raz-Bahat M, Douek J, Moiseeva E, Peters E, Rinkevich B (2017) The digestive system of the stony coral Stylophora pistillata. Cell Tissue Res 368:311–323

    Article  CAS  PubMed  Google Scholar 

  • Rohwer F, Kelley S (2004) Culture-independent analyses of coral-associated microbes. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin Heidelberg, pp 265–277

    Chapter  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Micro 5:355–362

    Article  CAS  Google Scholar 

  • Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Yossi L (2009) The role of microorganisms in coral bleaching. ISME J 3:139–146

    Article  CAS  PubMed  Google Scholar 

  • Rosset S, Wiedenmann J, Reed AJ, D’Angelo C (2017) Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull 118:180–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rougerie F, Wauthy B (1993) The endo-upwelling concept: from geothermal convection to reef construction. Coral Reefs 12:19–30

    Article  Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    Article  CAS  PubMed  Google Scholar 

  • Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 3:563–572

    Article  CAS  PubMed  Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142

    Article  CAS  Google Scholar 

  • Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Micro 11:227–238

    Article  CAS  Google Scholar 

  • Staley TJ, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Subramoni S, Suárez-Moreno Z, Venturi V (2010) Lipases as pathogenicity factors of plant pathogens. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 3269–3277

    Chapter  Google Scholar 

  • Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbiol 6:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Unanue M, Azúa I, Barcina I, Egea L, Iriberri J (1993) Size distribution of aminopeptidase activity and bacterial incorporation of dissolved substrates in three aquatic ecosystems. FEMS Microbiol Ecol 11:175–183

    Article  Google Scholar 

  • Wambeke F, Christaki U, Giannakourou A, Moutin T, Souvemerzoglou K (2002) Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microb Ecol 43:119–133

    Article  PubMed  Google Scholar 

  • Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole- genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziervogel K, Arnosti C (2008) Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate-free seawater from the north-eastern Gulf of Mexico. Environ Microbiol 10:289–299

    Article  CAS  PubMed  Google Scholar 

  • ZoBell C (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 42–75

Download references

Acknowledgements

This research was supported by grant #4827 from Gordon and Betty Moore Foundation to FA, Project 42076150 supported by National Natural Science Foundation of China (NSFC) to XM, Project 41877352 (NSFC), Shenzhen Fundamental Research and Discipline Layout project (JCYJ20180507182227257) and the Guangdong MEPP fund (GDOE[2019]A06) to XZ, China Scholarship Council (CSC) and #LMB20191102 from South China Sea Institute of Oceanology Chinese Academy of Sciences to YZ and NSF OCE (1442206) to MM. Lastly, we would like to thank our editor and the reviewers for their great advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-zhong Mao or Xiaoshan Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The views expressed in this article are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Steve Vollmer

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Guillemette, R., Malfatti, F. et al. Ectohydrolytic enzyme activities of bacteria associated with Orbicella annularis coral. Coral Reefs 40, 1899–1913 (2021). https://doi.org/10.1007/s00338-021-02188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02188-6

Keywords

Navigation