Download citation
Download citation
link to html
A new two-dimensional (2D) coordination polymer, namely, poly[[di­aqua-[μ4-2,2′-[tereph­thal­oyl­bis(aza­nedi­yl)]di­acetato]­calcium(II)] monohydrate], {[Ca(C12H10N2O6)(H2O)2]·H2O}n, (I), has been synthesized by the reaction of CaCl2 with 2,2′-[tereph­thal­oyl­bis(aza­nedi­yl)]di­acetic acid (H2L). The title com­pound was structurally characterized by single-crystal X-ray diffraction analysis, elemental analysis and IR spectroscopy. In the crystal structure of (I), each CaII cation binds to six carboxyl­ate groups from four symmetry-related L2− dianions. The hexa­dentate L2− ligand links four symmetry-related calcium cat­ions into a 2D layer-like structure, which can be simplified as a uninodal SP 2-periodic (3,6)III net with the point symbol (43·63). In the lattice, all layers pack in parallel arrays through weak interlayer hydrogen bonding and π–π inter­­actions. The thermal stability and photoluminescence properties of (I) have been investigated. Thermogravimetric analysis reveals the different thermal stabilities of the two coordinated water mol­ecules due to their different hydrogen-bonding inter­actions. The title coordination polymer exhibits an excitation-wavelength-dependent fluorescence in the solid state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962101041X/dg3022sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962101041X/dg3022Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322962101041X/dg3022sup3.pdf
Additional figures

CCDC reference: 942902

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Poly[[diaqua-[µ4-2,2'-[terephthaloylbis(azanediyl)]diacetato]calcium(II)] monohydrate] top
Crystal data top
[Ca(C12H10N2O6)(H2O)2]·H2OZ = 2
Mr = 372.35F(000) = 388
Triclinic, P1Dx = 1.585 Mg m3
a = 6.661 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.833 (5) ÅCell parameters from 2311 reflections
c = 12.612 (6) Åθ = 2.4–27.3°
α = 74.277 (6)°µ = 0.45 mm1
β = 79.224 (6)°T = 298 K
γ = 84.609 (7)°Block, colorless
V = 780.3 (7) Å30.10 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2466 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.956, Tmax = 0.978k = 1212
6752 measured reflectionsl = 1616
3500 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.037P)2 + 0.2954P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.26 e Å3
6 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca11.25863 (7)1.11412 (5)0.45454 (4)0.02446 (13)
O11.3797 (2)0.91071 (17)0.59367 (14)0.0294 (4)
O21.0549 (2)0.87796 (19)0.60380 (14)0.0351 (4)
C11.2164 (3)0.8514 (2)0.64274 (19)0.0222 (5)
C21.2265 (4)0.7426 (3)0.7532 (2)0.0313 (6)
H2A1.28690.65480.73790.038*
H2B1.31680.77520.79240.038*
N11.0319 (3)0.7141 (2)0.82597 (17)0.0312 (5)
H10.98400.63150.84090.037*
O30.9881 (3)0.93131 (18)0.85523 (15)0.0363 (4)
C100.1414 (4)0.6689 (3)1.15025 (19)0.0260 (5)
C70.3423 (4)0.7073 (2)1.07676 (19)0.0254 (5)
C80.3700 (4)0.8379 (2)0.9991 (2)0.0317 (6)
H80.26130.90460.99200.038*
C30.9245 (3)0.8125 (2)0.87056 (19)0.0265 (5)
C40.7218 (3)0.7711 (2)0.9416 (2)0.0264 (5)
C90.5577 (4)0.8690 (3)0.9327 (2)0.0323 (6)
H90.57450.95670.88120.039*
C50.6936 (4)0.6400 (3)1.0178 (2)0.0314 (6)
H50.80170.57281.02400.038*
C60.5061 (4)0.6089 (3)1.0844 (2)0.0312 (6)
H60.48900.52071.13510.037*
O40.0976 (3)0.54303 (17)1.18875 (15)0.0370 (4)
N20.0128 (3)0.7737 (2)1.17112 (17)0.0309 (5)
H20.04930.85931.14200.037*
C110.1854 (4)0.7503 (3)1.2404 (2)0.0349 (6)
H11A0.21940.65361.24940.042*
H11B0.28600.81201.20170.042*
C120.2031 (3)0.7750 (2)1.3545 (2)0.0270 (5)
O50.3795 (2)0.77374 (18)1.41158 (14)0.0323 (4)
O60.0473 (2)0.79722 (19)1.38916 (15)0.0358 (4)
O71.3077 (2)0.95735 (18)0.33418 (14)0.0340 (4)
H7A1.19630.90790.34270.041*
H7B1.40320.88870.35300.041*
O81.2872 (3)1.35794 (19)0.35771 (17)0.0490 (5)
H8A1.27601.41330.40510.059*
H8B1.18121.39090.32150.059*
O90.2835 (6)0.5726 (5)0.4705 (9)0.084 (2)0.843 (18)
H9A0.37910.61020.48720.101*
H9B0.18600.63360.45740.101*
O9A0.314 (4)0.604 (3)0.402 (4)0.084 (2)0.157 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0161 (2)0.0298 (3)0.0264 (3)0.00160 (18)0.00507 (19)0.0043 (2)
O10.0173 (8)0.0344 (9)0.0314 (9)0.0076 (7)0.0004 (7)0.0004 (7)
O20.0188 (8)0.0493 (11)0.0387 (10)0.0025 (7)0.0122 (8)0.0103 (9)
C10.0168 (11)0.0245 (12)0.0249 (12)0.0009 (9)0.0024 (10)0.0072 (10)
C20.0217 (12)0.0328 (13)0.0320 (14)0.0008 (10)0.0010 (11)0.0009 (11)
N10.0293 (11)0.0246 (11)0.0336 (12)0.0079 (9)0.0087 (9)0.0044 (9)
O30.0337 (10)0.0284 (9)0.0475 (12)0.0079 (8)0.0040 (9)0.0105 (8)
C100.0260 (12)0.0308 (13)0.0221 (12)0.0046 (10)0.0038 (10)0.0072 (10)
C70.0248 (12)0.0285 (12)0.0238 (13)0.0049 (10)0.0030 (10)0.0076 (10)
C80.0276 (13)0.0285 (13)0.0341 (15)0.0021 (10)0.0035 (11)0.0023 (11)
C30.0236 (12)0.0291 (13)0.0252 (13)0.0017 (10)0.0036 (10)0.0045 (10)
C40.0250 (12)0.0298 (13)0.0252 (13)0.0042 (10)0.0029 (10)0.0085 (10)
C90.0335 (14)0.0290 (13)0.0291 (14)0.0026 (11)0.0025 (11)0.0001 (11)
C50.0281 (13)0.0309 (13)0.0322 (14)0.0016 (11)0.0032 (11)0.0056 (11)
C60.0309 (14)0.0285 (13)0.0295 (14)0.0030 (10)0.0009 (11)0.0018 (11)
O40.0355 (10)0.0261 (9)0.0446 (11)0.0083 (8)0.0016 (9)0.0043 (8)
N20.0274 (11)0.0298 (11)0.0347 (12)0.0050 (9)0.0052 (9)0.0126 (9)
C110.0246 (13)0.0467 (16)0.0374 (15)0.0029 (11)0.0014 (12)0.0196 (13)
C120.0226 (12)0.0230 (12)0.0344 (14)0.0009 (9)0.0035 (11)0.0065 (10)
O50.0208 (9)0.0438 (10)0.0333 (10)0.0004 (7)0.0012 (8)0.0144 (8)
O60.0228 (9)0.0484 (11)0.0403 (11)0.0072 (8)0.0066 (8)0.0154 (9)
O70.0232 (9)0.0425 (10)0.0389 (11)0.0013 (7)0.0090 (8)0.0122 (8)
O80.0557 (13)0.0368 (11)0.0530 (13)0.0031 (9)0.0215 (11)0.0003 (9)
O90.061 (2)0.045 (2)0.152 (7)0.0021 (15)0.041 (3)0.022 (3)
O9A0.061 (2)0.045 (2)0.152 (7)0.0021 (15)0.041 (3)0.022 (3)
Geometric parameters (Å, º) top
Ca1—O2i2.3284 (19)C8—C91.378 (3)
Ca1—O1ii2.3778 (19)C8—H80.9300
Ca1—O82.385 (2)C3—C41.498 (3)
Ca1—O72.403 (2)C4—C91.387 (3)
Ca1—O12.4606 (18)C4—C51.389 (3)
Ca1—O6iii2.508 (2)C9—H90.9300
Ca1—O5iii2.5297 (19)C5—C61.378 (3)
Ca1—O22.837 (2)C5—H50.9300
Ca1—C12iii2.852 (3)C6—H60.9300
Ca1—Ca1ii3.9140 (17)N2—C111.441 (3)
Ca1—Ca1i4.0994 (19)N2—H20.8600
O1—C11.256 (3)C11—C121.506 (4)
O1—Ca1ii2.3778 (19)C11—H11A0.9700
O2—C11.242 (3)C11—H11B0.9700
O2—Ca1i2.3285 (19)C12—O61.257 (3)
C1—C21.518 (3)C12—O51.257 (3)
C2—N11.444 (3)C12—Ca1iii2.852 (3)
C2—H2A0.9700O5—Ca1iii2.5297 (19)
C2—H2B0.9700O6—Ca1iii2.508 (2)
N1—C31.334 (3)O7—H7A0.8990
N1—H10.8600O7—H7B0.8980
O3—C31.234 (3)O8—H8A0.9010
C10—O41.242 (3)O8—H8B0.8999
C10—N21.328 (3)O9—H9A0.8499
C10—C71.495 (3)O9—H9B0.8499
C7—C61.388 (3)O9A—H9A1.2543
C7—C81.392 (3)O9A—H9B1.0682
O2i—Ca1—O1ii146.09 (7)O2—C1—O1122.7 (2)
O2i—Ca1—O888.29 (7)O2—C1—C2121.0 (2)
O1ii—Ca1—O887.29 (6)O1—C1—C2116.26 (19)
O2i—Ca1—O775.07 (6)N1—C2—C1114.88 (19)
O1ii—Ca1—O776.19 (6)N1—C2—H2A108.5
O8—Ca1—O7114.08 (8)C1—C2—H2A108.5
O2i—Ca1—O1122.68 (6)N1—C2—H2B108.5
O1ii—Ca1—O172.02 (6)C1—C2—H2B108.5
O8—Ca1—O1147.67 (7)H2A—C2—H2B107.5
O7—Ca1—O185.41 (7)C3—N1—C2121.7 (2)
O2i—Ca1—O6iii83.43 (7)C3—N1—H1119.2
O1ii—Ca1—O6iii129.57 (6)C2—N1—H1119.2
O8—Ca1—O6iii85.23 (7)O4—C10—N2121.9 (2)
O7—Ca1—O6iii150.14 (6)O4—C10—C7120.5 (2)
O1—Ca1—O6iii89.15 (7)N2—C10—C7117.6 (2)
O2i—Ca1—O5iii132.81 (6)C6—C7—C8118.6 (2)
O1ii—Ca1—O5iii78.00 (6)C6—C7—C10119.2 (2)
O8—Ca1—O5iii75.16 (7)C8—C7—C10122.2 (2)
O7—Ca1—O5iii151.98 (6)C9—C8—C7120.3 (2)
O1—Ca1—O5iii76.37 (7)C9—C8—H8119.8
O6iii—Ca1—O5iii51.89 (6)C7—C8—H8119.8
O2i—Ca1—O275.37 (7)O3—C3—N1122.2 (2)
O1ii—Ca1—O2117.18 (5)O3—C3—C4121.3 (2)
O8—Ca1—O2154.46 (6)N1—C3—C4116.5 (2)
O7—Ca1—O280.94 (7)C9—C4—C5118.9 (2)
O1—Ca1—O248.26 (5)C9—C4—C3118.6 (2)
O6iii—Ca1—O273.66 (6)C5—C4—C3122.5 (2)
O5iii—Ca1—O2101.55 (6)C8—C9—C4120.8 (2)
O2i—Ca1—C12iii109.22 (7)C8—C9—H9119.6
O1ii—Ca1—C12iii103.45 (6)C4—C9—H9119.6
O8—Ca1—C12iii82.29 (8)C6—C5—C4120.3 (2)
O7—Ca1—C12iii163.46 (6)C6—C5—H5119.9
O1—Ca1—C12iii78.88 (7)C4—C5—H5119.9
O6iii—Ca1—C12iii26.12 (6)C5—C6—C7121.0 (2)
O5iii—Ca1—C12iii26.14 (6)C5—C6—H6119.5
O2—Ca1—C12iii84.72 (7)C7—C6—H6119.5
O2i—Ca1—Ca1ii147.52 (5)C10—N2—C11122.8 (2)
O1ii—Ca1—Ca1ii36.72 (4)C10—N2—H2118.6
O8—Ca1—Ca1ii120.16 (6)C11—N2—H2118.6
O7—Ca1—Ca1ii78.74 (5)N2—C11—C12115.2 (2)
O1—Ca1—Ca1ii35.30 (4)N2—C11—H11A108.5
O6iii—Ca1—Ca1ii112.19 (5)C12—C11—H11A108.5
O5iii—Ca1—Ca1ii74.07 (5)N2—C11—H11B108.5
O2—Ca1—Ca1ii81.89 (5)C12—C11—H11B108.5
C12iii—Ca1—Ca1ii91.15 (5)H11A—C11—H11B107.5
O2i—Ca1—Ca1i42.03 (5)O6—C12—O5122.5 (2)
O1ii—Ca1—Ca1i141.95 (5)O6—C12—C11120.6 (2)
O8—Ca1—Ca1i127.40 (5)O5—C12—C11116.8 (2)
O7—Ca1—Ca1i75.20 (5)O6—C12—Ca1iii61.47 (13)
O1—Ca1—Ca1i81.14 (5)O5—C12—Ca1iii62.46 (13)
O6iii—Ca1—Ca1i74.95 (5)C11—C12—Ca1iii167.11 (17)
O5iii—Ca1—Ca1i121.64 (5)C12—O5—Ca1iii91.40 (14)
O2—Ca1—Ca1i33.34 (3)C12—O6—Ca1iii92.41 (15)
C12iii—Ca1—Ca1i97.09 (5)Ca1—O7—H7A112.0
Ca1ii—Ca1—Ca1i112.43 (4)Ca1—O7—H7B111.4
C1—O1—Ca1ii146.93 (14)H7A—O7—H7B102.2
C1—O1—Ca1102.32 (13)Ca1—O8—H8A111.9
Ca1ii—O1—Ca1107.98 (6)Ca1—O8—H8B111.6
C1—O2—Ca1i169.89 (17)H8A—O8—H8B102.1
C1—O2—Ca184.81 (14)H9A—O9—H9B109.5
Ca1i—O2—Ca1104.63 (6)H9A—O9A—H9B72.9
Ca1i—O2—C1—O1146.1 (8)O3—C3—C4—C5137.6 (3)
Ca1—O2—C1—O113.2 (2)N1—C3—C4—C541.9 (3)
Ca1i—O2—C1—C233.3 (10)C7—C8—C9—C40.2 (4)
Ca1—O2—C1—C2167.4 (2)C5—C4—C9—C80.8 (4)
Ca1ii—O1—C1—O2140.5 (2)C3—C4—C9—C8177.6 (2)
Ca1—O1—C1—O215.6 (3)C9—C4—C5—C60.9 (4)
Ca1ii—O1—C1—C238.9 (4)C3—C4—C5—C6177.5 (2)
Ca1—O1—C1—C2164.99 (17)C4—C5—C6—C70.0 (4)
O2—C1—C2—N121.9 (3)C8—C7—C6—C50.9 (4)
O1—C1—C2—N1158.7 (2)C10—C7—C6—C5179.8 (2)
C1—C2—N1—C365.6 (3)O4—C10—N2—C110.6 (4)
O4—C10—C7—C623.9 (3)C7—C10—N2—C11179.8 (2)
N2—C10—C7—C6156.9 (2)C10—N2—C11—C12106.1 (3)
O4—C10—C7—C8154.8 (2)N2—C11—C12—O68.3 (3)
N2—C10—C7—C824.4 (3)N2—C11—C12—O5171.0 (2)
C6—C7—C8—C91.0 (4)N2—C11—C12—Ca1iii87.4 (7)
C10—C7—C8—C9179.8 (2)O6—C12—O5—Ca1iii13.8 (2)
C2—N1—C3—O32.4 (4)C11—C12—O5—Ca1iii165.52 (19)
C2—N1—C3—C4178.1 (2)O5—C12—O6—Ca1iii13.9 (2)
O3—C3—C4—C940.8 (3)C11—C12—O6—Ca1iii165.4 (2)
N1—C3—C4—C9139.7 (2)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y+2, z+1; (iii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4iv0.862.002.810 (3)158
N2—H2···O3iii0.862.062.828 (3)148
O7—H7A···O6v0.901.952.837 (3)170
O7—H7B···O5vi0.901.892.766 (2)166
O8—H8B···O4vii0.902.052.814 (3)143
C11—H11A···O40.972.382.769 (3)104
O8—H8A···O9viii0.901.972.843 (8)164
O8—H8A···O9Aviii0.901.902.660 (3)140
O9—H9A···O5v0.852.272.986 (6)142
O9—H9B···O6ix0.852.243.080 (6)169
Symmetry codes: (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+2; (v) x+1, y, z1; (vi) x+2, y, z1; (vii) x+1, y+1, z1; (viii) x+1, y+1, z; (ix) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds