Skip to main content

Advertisement

Log in

Evidence for polybaric fractional crystallization in a continental arc: Hidden Lakes mafic complex, Sierra Nevada batholith, California

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Although the voluminous granitoids that constitute the upper crust of the Sierra Nevada batholith (California) have been investigated in detail, comparatively few studies focus on the origin of mafic bodies at similar crustal levels. Here, we present field and petrographic observations, geochronology, and geochemistry of the Hidden Lakes mafic complex in the central-eastern Sierra Nevada batholith. Our results show that the complex comprises norites, gabbros, monzondiorites, and monzonites that record fractional crystallization of a hydrous (~ 3 wt% H2O), non-primitive basalt within the upper crust (0.3 GPa) at c. 95–96 Ma. To quantitatively model the generation of the observed lithologies, we construct a two-stage polybaric crystallization model based on cumulate and melt-like bulk-rock compositions. In the first step, we model fractionation of a primitive, mantle-derived basalt at > 30 km depth, generating dominantly pyroxenite cumulates. The evolution of the derivative melt (67% of melt mass remaining) is then modeled to fractionate at 12 km depth to produce the observed lithologies within the Hidden Lakes mafic complex. Extension of this model to higher-silica melt compositions (> 65 wt% SiO2) replicates observed granodiorite compositions in the batholith, suggesting that polybaric crystallization could be an important process for the generation of arc granitoid melts. The depth of differentiation in continental arcs is debated, as field observations indicate abundant lower crustal fractionation while experimental data suggest that high-pressure crystallization of hydrous basalts cannot produce the non-peraluminous granitoid compositions observed in continental arc batholiths. Our model supports polybaric differentiation as one potential mechanism to resolve this inconsistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ague JJ, Brimhall GH (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geol Soc Am Bull 100(6):912–927

    Google Scholar 

  • Almeev RR, Ariskin AA, Kimura J-I, Barmina GS (2013) The role of polybaric crystallization in genesis of andesitic magmas: phase equilibria simulations of the Bezymianny volcanic subseries. J Volcanol Geoth Res 263:182–192

    Google Scholar 

  • Annen C, Blundy J, Sparks R (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Google Scholar 

  • Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49(4):665–695

    Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83(9–10):1127–1132

    Google Scholar 

  • Bartels KS, Kinzler RJ, Grove TL (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Miner Petrol 108(3):253–270

    Google Scholar 

  • Bas ML, Maitre RL, Streckeisen A, Zanettin B, Rocks ISotSoI (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750

    Google Scholar 

  • Bateman PC (1992) Pre-Tertiary bedrock geologic map of the Mariposa 1° by 2° quadrangle, Sierra Nevada, California; Nevada. The Survey

  • Bateman PC, Eaton JP (1967) Sierra Nevada Batholith: the batholith was generated within a synclinorium. Science 158(3807):1407–1417

    Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Miner Petrol 115(1):103–111

    Google Scholar 

  • Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Miner Petrol 166(3):861–886

    Google Scholar 

  • Blundy JD, Holland TJ (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Miner Petrol 104(2):208–224

    Google Scholar 

  • Blundy J, Melekhova E, Ziberna L, Humphreys MC, Cerantola V, Brooker RA, McCammon CA, Pichavant M, Ulmer P (2020) Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts. Contrib Miner Petrol 175(11):1–32

    Google Scholar 

  • Brounce M, Kelley K, Cottrell E (2014) Variations in Fe3+/∑ Fe of Mariana Arc basalts and mantle wedge fO2. J Petrol 55(12):2513–2536

    Google Scholar 

  • Bucholz CE, Spencer CJ (2019) Strongly peraluminous granites across the Archean-Proterozoic transition. J Petrol 60(7):1299–1348

    Google Scholar 

  • Bucholz CE, Jagoutz O, Schmidt MW, Sambuu O (2014) Fractional crystallization of high-K arc magmas: biotite-versus amphibole-dominated fractionation series in the Dariv Igneous Complex, Western Mongolia. Contrib Miner Petrol 168(5):1072

    Google Scholar 

  • Bucholz CE, Stolper EM, Eiler JM, Breaks FW (2018) A comparison of oxygen fugacities of strongly peraluminous granites across the Archean-Proterozoic boundary. J Petrol 59(11):2123–2156

    Google Scholar 

  • Cawthorn RG, Brown PA (1976) A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation. J Geol 84(4):467–476

    Google Scholar 

  • Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329

    Google Scholar 

  • Cervantes P, Wallace PJ (2003) Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31(3):235–238

    Google Scholar 

  • Chapman AD, Saleeby JB, Wood DJ, Piasecki A, Kidder S, Ducea MN, Farley KA (2012) Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere 8(2):314–341

    Google Scholar 

  • Chapman JB, Gehrels GE, Ducea MN, Giesler N, Pullen A (2016) A new method for estimating parent rock trace element concentrations from zircon. Chem Geol 439:59–70

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res Solid Earth 100(B6):9761–9788

    Google Scholar 

  • Coleman D, Glazner A, Miller J, Bradford K, Frost T, Joye J, Bachl C (1995) Exposure of a Late Cretaceous layered mafic-felsic magma system in the central Sierra Nevada Batholith, California. Contrib Mineral Petrol 120(2):129–136

    Google Scholar 

  • Debari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103(1):37–47

    Google Scholar 

  • Debari S, Kay SM, Kay R (1987) Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc. J Geol 95(3):329–341

    Google Scholar 

  • DeCelles PG, Ducea MN, Kapp P, Zandt G (2009) Cyclicity in Cordilleran orogenic systems. Nat Geosci 2(4):251–257

    Google Scholar 

  • Dodge F, Calk L, Kistler R (1986) Lower crustal xenoliths, Chinese Peak lava flow, central Sierra Nevada. J Petrol 27(6):1277–1304

    Google Scholar 

  • Dodge F, Lockwood J, Calk L (1988) Fragments of the mantle and crust from beneath the Sierra Nevada batholith: Xenoliths in a volcanic pipe near Big Creek, California. Geol Soc Am Bull 100(6):938–947

    Google Scholar 

  • Domenick MA, Kistler RW, Dodge F, Tatsumoto M (1983) Nd and Sr isotopic study of crustal and mantle inclusions from the Sierra Nevada and implications for batholith petrogenesis. Geol Soc Am Bull 94(6):713–719

    Google Scholar 

  • Draper DS, Johnston AD (1992) Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib Miner Petrol 112(4):501–519

    Google Scholar 

  • Ducea MN (2001) The California arc: thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11(11):4–10

    Google Scholar 

  • Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: Evidence from xenolith thermobarometry. J Geophys Res Solid Earth 101(B4):8229–8244

    Google Scholar 

  • Ducea M, Saleeby J (1998) A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int Geol Rev 40(1):78–93

    Google Scholar 

  • Ducea MN, Paterson SR, DeCelles PG (2015) High-volume magmatic events in subduction systems. Elements 11(2):99–104

    Google Scholar 

  • English JM, Johnston ST, Wang K (2003) Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet Sci Lett 214(3–4):619–632

    Google Scholar 

  • Erdmann M, Koepke J (2016) Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity. Contrib Miner Petrol 171(10):83

    Google Scholar 

  • Fliedner MM, Klemperer SL, Christensen NI (2000) Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. J Geophys Res Solid Earth 105(B5):10899–10921

    Google Scholar 

  • Frost TP (1987) Sample localities, radiometric ages, descriptions, and major-and trace-element abundances of Late Jurassic mafic plutonic rocks, eastern Sierra Nevada, California. Department of the Interior, US Geological Survey

  • Frost TP, Mahood GA (1987) Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99(2):272–291

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212

    Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south–central Alaska. J Petrol 47(6):1051–1093

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145(5):515–533

    Google Scholar 

  • Guo L, Jagoutz O, Shinevar WJ, Zhang HF (2020) Formation and composition of the Late Cretaceous Gangdese arc lower crust in southern Tibet. Contrib Miner Petrol 175:58

    Google Scholar 

  • Hamada M, Fujii T (2008) Experimental constraints on the effects of pressure and H 2 O on the fractional crystallization of high-Mg island arc basalt. Contrib Miner Petrol 155(6):767–790

    Google Scholar 

  • Hamada M, Okayama Y, Kaneko T, Yasuda A, Fujii T (2014) Polybaric crystallization differentiation of H 2 O-saturated island arc low-K tholeiite magmas: a case study of the Izu-Oshima volcano in the Izu arc. Earth Planets Space 66(1):1–10

    Google Scholar 

  • Holland JE, Surpless B, Smith DR, Loewy SL, Lackey JS (2013) Intrusive history and petrogenesis of the Ash Mountain Complex, Sierra Nevada batholith, California (USA). Geosphere 9(4):691–717

    Google Scholar 

  • Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H 2 O. Contrib Miner Petrol 127(1–2):17–29

    Google Scholar 

  • Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160(3):359–381

    Google Scholar 

  • Jagoutz O (2014) Arc crustal differentiation mechanisms. Earth Planet Sci Lett 396:267–277

    Google Scholar 

  • Jagoutz O, Klein B (2018) On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build-up of arc (and continental) crust. Am J Sci 318(1):29–63

    Google Scholar 

  • Jagoutz OE, Burg J-P, Hussain S, Dawood H, Pettke T, Iizuka T, Maruyama S (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contrib Miner Petrol 158(6):739–755

    Google Scholar 

  • Jones CH, Phinney RA (1998) Seismic structure of the lithosphere from teleseismic converted arrivals observed at small arrays in the southern Sierra Nevada and vicinity, California. J Geophys Res Solid Earth 103(B5):10065–10090

    Google Scholar 

  • Kay SM, Kay R (1985) Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. Geology 13(7):461–464

    Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607

    Google Scholar 

  • Kirsch M, Paterson SR, Wobbe F, Ardila AMM, Clausen BL, Alasino PH (2016) Temporal histories of Cordilleran continental arcs: testing models for magmatic episodicity. Am Miner 101(10):2133–2154

    Google Scholar 

  • Klein BZ, Jagoutz OE (2021) Construction of a trans-crustal magma system: building the Bear Valley Intrusive Suite, southern Sierra Nevada, California. Earth Planet Sci Lett 553:116624

    Google Scholar 

  • Köhler T, Brey G (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54(9):2375–2388

    Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H 2 O content, and oxygen fugacity. Contrib Miner Petrol 164(2):317–339

    Google Scholar 

  • Kress VC, Carmichael IS (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108(1–2):82–92

    Google Scholar 

  • Lackey JS, Valley JW, Saleeby JB (2005) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235(1–2):315–330

    Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: the oxygen isotope record. J Petrol 49(7):1397–1426

    Google Scholar 

  • Leake BE, Woolley AR, Arps CE, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35(1):219–246

    Google Scholar 

  • Lee C-T, Rudnick RL, Brimhall GH Jr (2001) Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology. Geochem Geophys Geosyst. https://doi.org/10.1029/2001GC000152

    Article  Google Scholar 

  • Lee C-TA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib Mineral Petrol 151(2):222–242

    Google Scholar 

  • Lockwood J, Bateman P (1976) Geologic map of the Shaver Lake 15-minute quadrangle, central Sierra Nevada, California: US Geological Survey. Geologic Quadrangle Map GQ-1271, scale 1(62,500)

  • Loucks RR, Fiorentini ML, Henríquez GJ (2020) New magmatic oxybarometer using trace elements in zircon. J Petrol 61(3)

  • Mason RA (1992) Models of order and iron-fluorine avoidance in biotite. Can Mineral 30(2):343–354

    Google Scholar 

  • Mayo EB (1941) Deformation in the interval Mt. Lyell-Mt. Whitney, California. Bull Geol Soc Am 52(7):1001–1084

    Google Scholar 

  • McCarthy A, Müntener O (2016) Comb layering monitors decompressing and fractionating hydrous mafic magmas in subvolcanic plumbing systems (Fisher Lake, Sierra Nevada, USA). J Geophys Res Solid Earth 121(12):8595–8621

    Google Scholar 

  • Melekhova E, Blundy J, Robertson R, Humphreys MC (2015) Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles. J Petrol 56(1):161–192

    Google Scholar 

  • Middlemost EA (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37(3–4):215–224

    Google Scholar 

  • Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368(6471):514–520

    Google Scholar 

  • Mukhopadhyay B (1991) Garnet breakdown in some deep seated garnetiferous xenoliths from the central Sierra Nevada: petrologic and tectonic implications. Lithos 27(1):59–78

    Google Scholar 

  • Mukhopadhyay B, Manton W (1994) Upper-mantle fragments from beneath the Sierra Nevada Batholith: partial fusion, fractional crystallization, and metasomatism in a subduction related ancient lithosphere. J Petrol 35(5):1417–1450

    Google Scholar 

  • Müntener O, Ulmer P (2018) Arc crust formation and differentiation constrained by experimental petrology. Am J Sci 318(1):64–89

    Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141(6):643–658

    Google Scholar 

  • Mutch E, Blundy J, Tattitch B, Cooper F, Brooker R (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib Miner Petrol 171(10):85

    Google Scholar 

  • Nadin ES, Saleeby JB, Wright J, Shervais J (2008) Disruption of regional primary structure of the Sierra Nevada batholith by the Kern Canyon fault system, California. Geol Soc Am-Special Papers 438:429

    Google Scholar 

  • Nadin ES, Saleeby JB, Wong M (2016) Thermal evolution of the Sierra Nevada batholith, California, and implications for strain localization. Geosphere 12(2):377–399

    Google Scholar 

  • Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1015

    Google Scholar 

  • Otamendi JE, Ducea MN, Bergantz GW (2012) Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. J Petrol 53(4):761–800

    Google Scholar 

  • Peselnick L, Lockwood JP, Stewart R (1977) Anisotropic elastic velocities of some upper mantle xenoliths underlying the Sierra Nevada batholith. J Geophys Res 82(14):2005–2010

    Google Scholar 

  • Pickett DA, Saleeby JB (1993) Thermobarometric constraints on the depth of exposure and conditions of plutonism and metamorphism at deep levels of the Sierra Nevada batholith, Tehachapi Mountains, California. J Geophys Res Solid Earth 98(B1):609–629

    Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255(1–2):53–69

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Google Scholar 

  • Ratajeski K, Glazner AF, Miller BV (2001) Geology and geochemistry of mafic to felsic plutonic rocks in the Cretaceous intrusive suite of Yosemite Valley, California. Geol Soc Am Bull 113(11):1486–1502

    Google Scholar 

  • Reid JB Jr, Evans OC, Fates DG (1983) Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth Planet Sci Lett 66:243–261

    Google Scholar 

  • Rezeau H, Klein BZ, Jagoutz O (2021) Mixing dry and wet magmas in the lower crust of a continental arc: new petrological insights from the Bear Valley Intrusive Suite, southern Sierra Nevada, California. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-021-01832-2

    Article  Google Scholar 

  • Ross DC (1985) Mafic: gneissic complex (batholithic root?) in the southernmost Sierra Nevada, California. Geology 13(4):288–291

    Google Scholar 

  • Rowe MC, Kent AJ, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc. J Petrol 50(1):61–91

    Google Scholar 

  • Ruppert S, Fliedner MM, Zandt G (1998) Thin crust and active upper mantle beneath the southern Sierra Nevada in the western United States. Tectonophysics 286(1–4):237–252

    Google Scholar 

  • Saleeby J, Ducea MN, Busby C, Nadin E, Wetmore PH, Wright J, Shervais J (2008) Chronology of pluton emplacement and regional deformation in the southern Sierra Nevada batholith, California. Geol Soc Am - Special Papers 438:397

    Google Scholar 

  • Sams DB, Saleeby JB (1988) Geology and petrotectonic significance of crystalline rocks of the southernmost Sierra Nevada, California. In: Ernst WG (ed) Metamorphism and Crustal Evolution of the Western United States (Rubey Volume 7): Prentice Hall Inc 865:893

  • Schmidt MW, Jagoutz O (2017) The global systematics of primitive arc melts. Geochem Geophys Geosyst 18(8):2817–2854

    Google Scholar 

  • Sisson T, Grove T (1993) Experimental investigations of the role of H 2 O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143–166

    Google Scholar 

  • Sisson T, Layne G (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117(3–4):619–635

    Google Scholar 

  • Sisson T, Grove T, Coleman D (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Miner Petrol 126(1–2):81–108

    Google Scholar 

  • Sisson T, Ratajeski K, Hankins W, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148(6):635–661

    Google Scholar 

  • Soesoo A (2000) Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia. J Geol Soc 157(1):135–149

    Google Scholar 

  • Sparks R, Marshall L (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29(1–4):99–124

    Google Scholar 

  • Stolz A, Jochum K, Spettel B, Hofmann A (1996) Fluid-and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island-arc basalts. Geology 24(7):587–590

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond, Special Publications 42(1):313–345

    Google Scholar 

  • Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1· 0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59(1):11–58

    Google Scholar 

  • Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1· 0 GPa. J Petrol 45(12):2369–2388

    Google Scholar 

  • Walker BA, Bergantz GW, Otamendi JE, Ducea MN, Cristofolini EA (2015) A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J Petrol 56(9):1863–1896

    Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Miner 100(10):2172–2184

    Google Scholar 

Download references

Acknowledgements

We thank Joe Biasi, Allyson Trussel, and Ben Klein for their assistance in the field, and thank Chi Ma for help with microprobe analyses and Nathan Dalleska for ICPMS support. We are grateful to the UCSB Petrochronology lab and Arizona Laserchron Center for their assistance with zircon LA-ICPMS. The geochronology analyses were supported by Awards for Geochronology Student Research2 funding (via National Science Foundation Grant no. EAR-1322032) awarded to M.J.L. O.J. and C.E.B. were supourted in part by EAR-1322032. Reviews by Cin-Ty Lee and Saskia Erdmann, as well as comments from editor Othmar Müntener, have been very helpful for improving this manuscript and are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeline J. Lewis.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, M.J., Bucholz, C.E. & Jagoutz, O.E. Evidence for polybaric fractional crystallization in a continental arc: Hidden Lakes mafic complex, Sierra Nevada batholith, California. Contrib Mineral Petrol 176, 90 (2021). https://doi.org/10.1007/s00410-021-01844-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01844-y

Keywords

Navigation