Skip to main content
Log in

Terahertz Nondestructive Stratigraphic Analysis of Complex Layered Structures: Reconstruction Techniques

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz (THz) time-of-flight tomography (TOFT), a nondestructive-evaluation technique for the stratigraphic characterization of structures with layers on the micron-to-millimeter scales, has proven to be challenging to apply to samples containing both micron-scale and millimeter-scale layers. In THz TOFT, echoes reflected from distant interfaces and defects are often obscured as they may be immersed in a noisy background as such features in the reflected signal may be weak due to attenuation and dispersion, leading to the loss of valuable information. Moreover, overlapping echoes from any optically thin layers, such as thin coatings on thick specimens, are likely to be mistaken for a single interface in reconstructing the stratigraphy. Thus, layered structures containing both thick and thin layers have proven problematic for THz TOFT characterization. In this paper, a sparse-deconvolution (SD) technique, based on an interior-point method, and including a propagation model accounting for dispersion is demonstrated. The method is shown to be successful in extracting the impulse response of samples that combine the challenges of both thick and thin layers. The robustness and effectiveness of this method are verified numerically and experimentally. While the proposed SD approach does not perform as well as cross-correlation (CC) techniques in terms of the maximum thickness, it can provide a clearer and more accurate reconstruction of moderately thick samples incorporating thin layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Dong, J.B. Jackson, M. Melis, D. Giovanacci, G.C. Walker, A. Locquet, J.W. Bowen, and D.S. Citrin, “Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting,” Opt. Express, vol. 24, no. 23, pp. 26972-26985, 2016.

    Article  Google Scholar 

  2. J. Dong, A. Locquet, M. Melis, and D.S. Citrin, “Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry,” Sci. Rep., vol. 7, no. 1, pp. 1-12, 2017.

    Article  Google Scholar 

  3. C.L. Dandolo, J.P. Guillet, X. Ma, F. Fauquet, M. Roux, and P. Mounaix, “Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis,” Opt. Express, vol. 26, no. 5, pp. 5358-5367, 2018.

    Article  Google Scholar 

  4. M. Mikerov, R. Shrestha, P. van Dommelen, D.M. Mittleman, and M. Koch, “Analysis of ancient ceramics using terahertz imaging and photogrammetry,” Opt. Express, vol. 28, no. 15, pp. 22255-22263, 2020.

    Article  Google Scholar 

  5. K. Krügener, J. Ornik, L.M. Schneider, A. Jäckel, C.L. Koch-Dandolo, E. Castro-Camus, N. Riedl-Siedow, M. Koch, and W. Viöl, “Terahertz inspection of buildings and architectural art,” Appl. Sci., vol. 10, no. 15, pp. 5166, 2020.

    Article  Google Scholar 

  6. J. Dong, A. Locquet, and D.S. Citrin, “Terahertz quantitative nondestructive evaluation of failure modes in polymer-coated steel,” IEEE J Sel Top Quantum Electron., vol. 23, no. 4, pp. 1-7, 2016.

    Article  Google Scholar 

  7. M. Zhai, A. Locquet, C. Roquelet, P. Alexandre, L. Dahéron, and D.S. Citrin, “Nondestructive measurement of mill-scale thickness on steel by terahertz time-of-flight tomography,” Surf. Coat. Technol., vol. 393, pp. 125765, 2020.

    Article  Google Scholar 

  8. M. Zhai, A. Locquet, C. Roquelet, L.A. Ronqueti, and D.S. Citrin, “Thickness characterization of multi-layer coated steel by terahertz time-of-flight tomography,” NDT & E Int., vol. 116, pp. 102358, 2020.

    Article  Google Scholar 

  9. F.Ellrich, M. Bauer, N. Schreiner, A. Keil, T. Pfeiffer, J. Klier, S. Weber, J. Jonuscheit, F. Friederich, and D. Molter, “Terahertz quality inspection for automotive and aviation industries,” J. Infrared Millim. Terahertz Waves, vol. 41, no. 4, pp. 470-489, 2020.

    Article  Google Scholar 

  10. J. Wang, Q. Sun, R.I. Stantchev, T.W. Chiu, A.T. Ahuja, and E. Pickwell-MacPherson, “In vivo terahertz imaging to evaluate scar treatment strategies: silicone gel sheeting,” Biomed. Opt. Express, vol. 10, no. 7, pp. 3584-3590, 2019.

    Article  Google Scholar 

  11. A. Gong, Y. Qiu, X. Chen, Z. Zhao, L. Xia, and Y. Shao, “Biomedical applications of terahertz technology,” Appl. Spectrosc. Rev., vol. 55, no. 5, pp. 418-438, 2020.

    Article  Google Scholar 

  12. Y. Chen, S. Huang, and E. Pickwell-MacPherson, “Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy,” Opt. Express, vol. 18, no. 2, pp. 1177-1190, 2010.

    Article  Google Scholar 

  13. J. Dong, X. Wu, A. Locquet, and D.S. Citrin, “Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution,” IEEE Trans Terahertz Sci Technol., vol. 7, no. 3, pp. 260-267, 2017.

    Article  Google Scholar 

  14. M. Zhai, A. Locquet, M. Jung, D. Woo, and D.S. Citrin, “Characterization of nanoporous Al2O3 films at terahertz frequencies,” Opt. Lett., vol. 45, no. 14, pp. 4092-4095, 2020.

    Article  Google Scholar 

  15. J. Dong, A. Locquet, and D.S. Citrin, “Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation,” Opt. Lett., vol. 42, no. 9, pp. 1828-1831, 2017.

    Article  Google Scholar 

  16. M. Zhai, A. Locquet, C. Roquelet, and D.S. Citrin, “Terahertz Time-of-Flight Tomography Beyond the Axial Resolution Limit: Autoregressive Spectral Estimation Based on the Modified Covariance Method,” J. Infrared, Millim Terahertz Waves, vol. 41, no. 8, pp. 926-939, 2020.

    Article  Google Scholar 

  17. K. Su, Y.C. Shen, and J.A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE Trans Terahertz Sci Technol., vol. 4, no. 4, pp. 432-439, 2014.

    Article  Google Scholar 

  18. S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett., vol. 109, no. 2, pp. 021105, 2016.

    Article  Google Scholar 

  19. T. Chang, Q. Guo, L. Liu, and H.L. Cui, “Hilbert-transform-based accurate determination of ultrashort-time delays in terahertz time-domain spectroscopy,” IEEE Trans Terahertz Sci Technol., vol. 7, no. 5, pp. 514-520, 2017.

    Article  Google Scholar 

  20. M. Zhai, A. Locquet, and D.S. Citrin, “Pulsed THz imaging for thickness characterization of plastic sheets,” NDT & E Int., vol. 116, pp. 102338, 2020.

    Article  Google Scholar 

  21. B. Qiao, X. Zhang, J. Gao, R. Liu, and X. Chen, “Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction,” Mech Syst Signal Process., vol. 83, pp. 93-115, 2017.

    Article  Google Scholar 

  22. A. Beck, and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J Imaging Sci., vol. 2, no. 1, pp. 183-202, 2009.

    Article  MathSciNet  Google Scholar 

  23. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, 2004.

    Article  MathSciNet  Google Scholar 

  24. J.M. Bioucas-Dias, and M.A. Figueiredo, "Two-step algorithms for linear inverse problems with non-quadratic regularization," in Proc. IEEE Int. Conf. Image Process (ICIP), 2007, vol. 1, pp. I-105. https://doi.org/10.1109/ICIP.2007.4378902.

  25. J.M. Bioucas-Dias, and M.A. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans Image Process., vol. 16, no. 12, pp. 2992-3004, 2007.

    Article  MathSciNet  Google Scholar 

  26. X. Huang, K. He, S. Yoo, O. Cossairt, A. Katsaggelos, N. Ferrier, and M. Hereld, "An Interior Point Method for Nonnegative Sparse Signal Reconstruction," In Proc. 25th IEEE Int. Conf. Image Process. (ICIP), 2018, pp. 1193–1197. https://doi.org/10.1109/ICIP.2018.8451710.

  27. K. Koh, S.J. Kim, and S. Boyd, “An interior-point method for large-scale l1-regularized logistic regression,” J Mach Learn Res. vol. 8, pp. 1519-1555, 2007.

    MathSciNet  MATH  Google Scholar 

  28. M. Naftaly, and R.E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE, vol. 95, no. 8, pp. 1658-1665, 2007.

    Article  Google Scholar 

  29. M.S. Islam, C.M.B. Cordeiro, M.J. Nine, J Sultana, A.L.S. Cruz, A. Dinovitser, B.W. Ng, H. Ebendorff-heidepriem, D. Losic, and D. Abbott, “Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology,” IEEE Access, vol. 8, 97204-97214, 2020.

    Article  Google Scholar 

  30. D.M. Mittleman, R.H. Jacobsen, and M.C. Nuss, “T-ray imaging,” IEEE J Sel Top Quantum Electron., vol. 2, no. 3, pp. 679-692, 1996.

    Article  Google Scholar 

  31. J. Pei, P. Ye, and W. Xie, "Optimal wavelet analysis for THz-TDS pulse signals," In Proc.Vol. 7277, Photonics and Optoelectronics Meetings (POEM) 2008: Terahertz Science and Technology, 2009, vol. 7277, p. 727708 (2009). https://doi.org/10.1117/12.819905.

  32. M. Srivastava, C.L. Anderson, and J.H. Freed, “A new wavelet denoising method for selecting decomposition levels and noise thresholds,” IEEE Access, vol. 4, pp. 3862-3877, 2016.

    Article  Google Scholar 

  33. Y.S. Jin, G.J. Kin, and S.G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc., vol. 49, no. 2, pp. 513-517, 2006.

    Google Scholar 

  34. Y. Chang, Y. Zi, J. Zhao, Z. Yang, W. He, and H. Sun, “An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection,” Meas Sci Technol., vol. 28, no. 3, pp. 035002, 2017.

    Article  Google Scholar 

  35. Y. Xu, X. Fang, S. Fan, L. Zhang, R. Yan, and X. Chen, “Double Gaussian mixture model-based terahertz wave dispersion compensation method using convex optimization technique,” Mech. Syst. Signal Process., vol. 164, pp. 108223, 2022.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of Conseil Régional Grand Est and CPER SusChemProc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Citrin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, M., Citrin, D.S. & Locquet, A. Terahertz Nondestructive Stratigraphic Analysis of Complex Layered Structures: Reconstruction Techniques. J Infrared Milli Terahz Waves 42, 929–946 (2021). https://doi.org/10.1007/s10762-021-00819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00819-1

Keywords

Navigation