Skip to main content

Advertisement

Log in

High-K calc-alkaline to shoshonitic intrusions in SE Tibet: implications for metasomatized lithospheric mantle beneath an active continental margin

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-K calc-alkaline to shoshonitic suites are widespread and generally volumetrically small but provide key information on magmatic mantle-crust interactions. Limited work has addressed the multi-stage formation of relatively high-volume high-K to shoshonitic rocks. A newly identified, Late-Cretaceous to Early-Cenozoic high-volume high-K to shoshonitic association (ca. 28,000 km3) is described, from the southeastern Himalayan–Tibetan orogen. The mafic intrusions are shoshonitic (K2O contents, ~ 3.3 wt.%), have high-Mg contents (~ 5.1 wt.%) with high-Mg# (57), LREE and LILEs with low Ba/Th, Ba/La, Sm/La (< 0.3), Nb/Yb and 208Pb/206Pb ratios but high Hf/Sm (> 0.70), Th/Yb, Th/La (> 0.2) and La/Sm, and lack an Eu anomaly. Their mafic minerals are hydrous, dominated by magnesio-hornblende (Mg#, ~ 0.69–0.73) and Mg- and K-biotite (MgO, 7.27–9.26 wt.%; K2O, 9.65–10.1 wt.%). Such characteristics strongly suggest derivation from the sub-continental lithospheric mantle (SCLM), metasomatized by sediment-derived melts/fluids. The associated felsic intrusions have high SiO2, alkali content (Na2O + K2O contents up to 10.0 wt.%) and incompatible elements (e.g., K, Rb), with ferropargasite-hastingsite and ferrobiotite-siderophyllite as the mafic phases. These characteristics point to derivation from the continental crust enriched by fluids, likely those released from the contemporaneous mafic magmas crystallising at depth. In contrast to low-volume potassic magmatism from post-collision and earliest arc-rift settings, these high-volume high-K and shoshonitic intrusions define a mantle-to-upper crust pathway at an active continental margin. Alongside geophysical data, these observations are consistent with the contemporary subduction history, arising from subduction of the Neo-Tethyan ocean slab to initial collision of India-Asia, from steepening subduction to slab rollback and breakoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Avanzinelli R, Elliot T, Tommasini S, Conticelli S (2008) Constraints on the genesis of the potassium-rich Italian volcanics from U/Th disequilibrium. J Petrol 49:195–223

    Article  Google Scholar 

  • Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos. 113(1–2):213–227

    Article  Google Scholar 

  • Avanzinelli R, Bianchini G, Tiepolo M, Jasim A, Natali C, Braschi E, Dallai L, Beccaluva L, Conticelli S (2020) Subduction-related hybridization of the lithospheric mantle revealed by trace element and Sr-Nd-Pb isotopic data in composite xenoliths from Tallante (Betic Cordillera, Spain). Lithos 105316:352–353

    Google Scholar 

  • Bao Z, Honglin Y, Chunlei Z et al (2016) simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fsLA-(MC)-ICP-MS. J Anal at Spectrom 31(4):1012–1022

    Article  Google Scholar 

  • Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ (2011) Diapirs as the source of the sediment signature in arc lavas. Nat Geosci 4(9):641

    Article  Google Scholar 

  • Campbell IH, Stepanov AS, Liang HY, Allen CM, Norman MD, Zhang YQ, Xie YW (2014) The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib Miner Petrol 167(3):983

    Article  Google Scholar 

  • Cao HW, Zou H, Zhang YH, Zhang ST, Zheng L, Zhang LK et al (2016) Late Cretaceous magmatism and related metallogeny in the Tengchong area: evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geol Rev 78:196–212

    Article  Google Scholar 

  • Cao HW, Pei QM, Zhang ST, Zhang LK, Tang L, Lin JZ, Zheng L (2017) Geology, geochemistry and genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China. J Asian Earth Sci 137:220–240

    Article  Google Scholar 

  • Castro A (2019) The dual origin of I-type granites: the contribution from experiments. Post-Archean Granitic Rocks: petrogenetic Processes and Tectonic Environments. Geol Soc London Special Publications 491.

  • Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH et al (2015) Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: evidences from zircon U-Pb ages and Hf–O isotopes, and whole-rock Sr–Nd isotopes. Lithos 212(215):93–110

    Article  Google Scholar 

  • Chiaradia M (2015) Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective. Sci Rep 5:8115

    Article  Google Scholar 

  • Chung SL, Lo CH, Lee TY, Zhang Y, Xie Y, Li X et al (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394(6695):769

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang Y, Xie Y, Lo CH, Lee TY et al (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68(3–4):173–196

    Article  Google Scholar 

  • Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, central Italy. Chem Geol 149(1–2):51–81

    Article  Google Scholar 

  • Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28(3–6):221–240

    Article  Google Scholar 

  • Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G et al (2009a) Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the western Mediterranean region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107(1):68–92

    Article  Google Scholar 

  • Conticelli S, Marchionni S, Rosa D, Giordano G, Boari E, Avanzinelli R (2009b) Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: sr–nd–pb isotope data on the Roccamonfina volcanic rocks, Roman magmatic province, southern Italy. Contrib Miner Petrol 157(1):41–63

    Article  Google Scholar 

  • Conticelli S, Avanzinelli R, Marchionni S, Tommasini S, Melluso L (2011) Sr-Nd-Pb isotopes from the Radicofani volcano, central Italy: constraints on heterogeneities in a veined mantle responsible for the shift from ultrapotassic shoshonite to basaltic andesite magmas in a post-collisional setting. Mineral Petrol 103(1–4):123–148

    Article  Google Scholar 

  • Conticelli S, Avanzinelli R, Ammannati E, Casalini M (2015) The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the central mediterranean. Lithos 232:174–196

    Article  Google Scholar 

  • Dallai L, Bianchini G, Avanzinelli R, Natali C, Conticelli S (2019) Heavy oxygen recycled into the lithospheric mantle. Sci Rep 9(1):8793

    Article  Google Scholar 

  • Duggen S, Hoernle K, Van DBP et al (2005) Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 6:1155–1201

    Article  Google Scholar 

  • Förster MW, Prelević D, Buhre S, Mertz-Kraus R, Foley SF (2019) An experimental study of the role of partial melts of sediments versus mantle melts in the sources of potassic magmatism. J Asian Earth Sci 177:76–88

    Article  Google Scholar 

  • Forster MD (1960) Interpretation of the composition of trioctahedral micas. U S Geol Survey Prof Paper 254-B: 11–49.

  • Fowler MB (1992) Elemental and O-Sr-Nd isotope geochemistry of the Glen Dessarry syenite, NW Scotland. J Geol Soc 149(2):209–220

    Article  Google Scholar 

  • Fowler MB, Henney PJ (1996) Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contrib Miner Petrol 126(1–2):199–215

    Article  Google Scholar 

  • Fowler MB, Henney PJ, Darbyshire DPF, Greenwood PB (2001) Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. J Geol Soc London 158:521–534

    Article  Google Scholar 

  • Fowler MB, Kocks H, Da Rbyshire D, Greenwood PB (2008) Petrogenesis of high Ba–Sr plutons from the northern Highlands terrane of the British Caledonian province. Lithos 105(1–2):129–148

    Article  Google Scholar 

  • Francalanci L, Innocenti F, Manetti P, Savas MY (2000) Neogene alkaline volcanism of the afyon-isparta area, Turkey: petrogenesis and geodynamic implications. Mineral Petrol 70(3–4):285–312

    Article  Google Scholar 

  • Gao Y, Hou Z, Kamber BS, Wei R, Meng X, Zhao R (2007) Lamproitic rocks from a continental collision zone: evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet. J Petrol 48(4):729–752

    Article  Google Scholar 

  • Guo Z, Hertogen JAN, Liu J, Pasteels P, Boven A, Punzalan LEA et al (2005) Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. J Petrol 46(1):33–78

    Article  Google Scholar 

  • Hanyu T, Tatsumi Y, Nakai SI, Chang Q, Miyazaki T, Sato K et al (2006) Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochem Geophys Geosyst 7(8):1–29

    Article  Google Scholar 

  • Harris NBW, Inger S, Xu R (1990) Cretaceous plutonism in Central Tibet: an example of post-collision magmatism? J Volcanol Geoth Res 44:21–32

    Article  Google Scholar 

  • Huang XL, Niu Y, Xu YG, Chen LL, Yang QJ (2010) Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China. J Petrol 51(8):1617–1654

    Article  Google Scholar 

  • Ishizuka O, Yuasa M, Tamura Y, Shukuno H, Stern RJ, Naka J et al (2010) Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation. Earth Planet Sci Lett 294(1–2):111–122

    Article  Google Scholar 

  • Janoušek V, Hanl P, Svojtka M, Hora JM, David B (2020) Ultrapotassic magmatism in the heyday of the Variscan orogeny: the story of the Tebí pluton, the largest durbachitic body in the bohemian massif. Int J Earth Sci 109:1767–1810

    Article  Google Scholar 

  • Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ, Yang WZ (2002) Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos 63(3–4):165–187

    Article  Google Scholar 

  • Jiang YH, Jiang SY, Ling HF, Dai BZ (2006) Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth Planet Sci Lett 241(3–4):617–633

    Article  Google Scholar 

  • Klootwijk CT, Gee JS, Peirce JW, Smith GM (1992) Neogene evolution of the Himalayan-Tibetan region: constraints from ODP Site 758, northern Ninetyeast Ridge; bearing on climatic change. Palaeogeogr Palaeoclimatol Palaeoecol 95(1–2):95–110

    Article  Google Scholar 

  • Kohn MJ, Parkinson CD (2002) Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology 30(7):591–594

    Article  Google Scholar 

  • Kornfeld D, Eckert S, Appel E, Ratschbacher L, Sonntag BL, Pfänder JA et al (2014) Cenozoic clockwise rotation of the Tengchong block, southeastern Tibetan Plateau: a paleomagnetic and geochronologic study. Tectonophysics 628:105–122

    Article  Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, p 236

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC et al (1997) Nomenclature of Amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Lee TY, Lawver LA (1995) Cenozoic plate reconstruction of Southeast Asia. Tectonophysics 251(1–4):85–138

    Article  Google Scholar 

  • Liu D, Zhao Z, Zhu DC, Niu Y, DePaolo DJ, Harrison TM et al (2014) Postcollisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta 143:207–231

    Article  Google Scholar 

  • Liu D, Zhao Z, Zhu DC, Niu Y, Widom E, Teng FZ et al (2015) Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth Planet Sci Lett 430:458–469

    Article  Google Scholar 

  • Lóperz S, Castro A, García-Casco A (2005) Production of granodiorite melt by interaction between hydrous magma and tonalitic crust. Experimental constraints and implication for the generation of Archaean TTG complexes. Lithos 79:229–250

    Article  Google Scholar 

  • Meen JK (1987) Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Miner Petrol 97(3):333–351

    Article  Google Scholar 

  • Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33

    Article  Google Scholar 

  • Miller C, Schuster R, Kotzli U et al (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Milord I, Sawyer EW, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semipelitic metasedimentary rocks: an example from St. Malo France. J Petrol 42:487–505

    Article  Google Scholar 

  • Palmer MR, Ersoy EY, Akal C, Uysal I, Genç ŞC, Banks LA, Cooper MJ et al (2019) A short, sharp pulse of potassium-rich volcanism during continental collision and subduction. Geology 47:1079–1082

    Article  Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of the granitic magmas. Geol Soc London 168:55–75

    Article  Google Scholar 

  • Peccerillo A (1999) Multiple mantle metasomatism in central–southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey. Contrib Miner Petrol 58:63–81

    Article  Google Scholar 

  • Pe-Piper G, Piper DJ, Koukouvelas I, Dolansky LM, Kokkalas S (2009) Postorogenic shoshonitic rocks and their origin by melting underplated basalts: the Miocene of Limnos Greece. Geol Soc Am Bull 121(1–2):39–54

    Google Scholar 

  • Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planet Sci Lett 243(3):669–680

    Article  Google Scholar 

  • Perugini D, Campos CD, Petrelli M, Dingwell DB (2015) Concentration variance decay during magma mixing: a volcanic chronometer. Sci Rep 5(1):14225

    Article  Google Scholar 

  • Prelević D, Stracke A et al (2010) Hf isotope compositions of Mediterranean lamproites: mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos 119(3–4):297–312

    Article  Google Scholar 

  • Prelević D, Foley SF, Romer R, and Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Elsevier Ltd 72: 2125–2156

  • Qi X, Zhu L, Grimmer JC, Hu Z (2015) Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu–Hf isotopic and geochemical data: Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. J Asian Earth Sci 110:170–188

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  • Ratschbacher BC, Paterson SR, Fischer TP (2019) Spatial and depth-dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem Geophys Geosyst 20:2997–3018

    Article  Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228(1–2):65–84

    Article  Google Scholar 

  • Searle MP, Noble SR, Cottle JM, Waters DJ, Mitchell AHG et al (2007) Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U‐Th‐Pb dating of metamorphic and magmatic rocks. Tectonics 26(3):TC3014

  • Smith DJ (2014) Clinopyroxene precursors to amphibole sponge in arc crust. Nat Commun 5:4329

    Article  Google Scholar 

  • Smith DJ, Petterson MG, Saunders AD, Millar IL, Jenkin GRT, Toba T et al (2009) The petrogenesis of sodic island arc magmas at savo volcano, solomon islands. Contrib Miner Petrol 158(6):785–801

    Article  Google Scholar 

  • Soder CG, Romer RL (2018) Post-collisional potassic–ultrapotassic magmatism of the Variscan Orogen: implications for mantle metasomatism during continental subduction. J Petrol 59(6):1007–1034

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Geological Society of London, Special Publication 42, pp 313–345

  • Thompson RN, Fowler MB (1986) Subduction-related shoshonitic and ultrapotassic magmatism: a study of Siluro-Ordovician syenites from the Scottish Caledonides. Contrib Miner Petrol 94(4):507–522

    Article  Google Scholar 

  • Tommasini S, Avanzinelli R, Conticelli S (2011) The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci Lett 301(3–4):469–478

    Article  Google Scholar 

  • van Hinsbergen DJ, Lippert PC, Li S, Huang W, Advokaat EL, Spakman W (2019) Reconstructing Greater India: paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760:69–94

    Article  Google Scholar 

  • Vervoort JD, Plank T, Prytulak J (2011) The Hf-Nd isotopic composition of marine sediments. Geochim Et Cosmochim Acta 75(20):5903–5926

    Article  Google Scholar 

  • Wang Y, Zhang L, Cawood PA, Ma L, Fan W, Zhang A et al (2014) Eocene supra-subduction zone mafic magmatism in the Sibumasu Block of SW Yunnan: implications for Neotethyan subduction and India-Asia collision. Lithos 206:384–399

    Article  Google Scholar 

  • Weis D, Kieffer B, Maerschalk C et al (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem Geophys Geosyst 7(8):Q08006

  • Xie JC, Zhu DC, Dong G, Zhao ZD, Wang Q, Mo X (2016) Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Res 39:217–229

    Article  Google Scholar 

  • Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR, Xie LW (2012) Temporal–spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes. J Asian Earth Sci 53:151–175

    Article  Google Scholar 

  • Yuan HL, Gao S, Dai MN, Zong CL, Gunther D, Fontaine GH, Liu XM, Diwu CR (2008) Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS. Chem Geol 247:100–118

    Article  Google Scholar 

  • Zhang C, Koepke J, Albrecht M, Horn I, Holtz F (2017) Apatite in the dike-gabbro transition zone of mid-ocean ridge: evidence for brine assimilation by axial melt lens. Am Mineral 102(3/4):558–570

    Article  Google Scholar 

  • Zhao SW, Lai SC, Qin JF, Zhu RZ (2016) Petrogenesis of eocene granitoids and microgranular enclaves in the western Tengchong Block: constraints on eastward subduction of the Neo-tethys. Lithos 264:96–107

    Article  Google Scholar 

  • Zhao SW, Lai SC, Qin JF, Zhu RZ, Wang JB (2017) Geochemical and geochronological characteristics of late Cretaceous to early Paleocene granitoids in the Tengchong Block, southwestern China: implications for crustal anatexis and thickness variations along the eastern Neo-Tethys subduction zone. Tectonophysics 694:87–100

    Article  Google Scholar 

  • Zhao SW, Lai SC, Pei XZ, Qin JF, Zhu RZ, Tao N, Gao L (2019) Compositional variations of granitic rocks in continental margin arc: constraints from the petrogenesis of Eocene granitic rocks in the Tengchong Block, SW China. Lithos 326:125–143

    Article  Google Scholar 

  • Zhu RZ, Lai SC, Santosh M, Qin JF, Zhao SW (2017) Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: magmatismin relation to subduction of the Bangong-Nujiang Tethys ocean. Lithos 286(287):175–190

    Article  Google Scholar 

  • Zhu RZ, Lai SC, Qin JF, Zhao SW, Santosh M (2018) Strongly peraluminous fractionated S-type granites in the Baoshan Block SW China: implications for two-stage melting of fertile continental materials following the closure of Bangong-Nujiang Tethys. Lithos 316:178–198

    Article  Google Scholar 

  • Zhu RZ, Lai SC, Qin JF, Zhao SW, Santosh M (2019) Petrogenesis of high-K calc-alkaline granodiorite and its enclaves from the SE Lhasa block, Tibet (SW China): implications for recycled subducted sediments. Geol Soc Am Bull 131(7–8):1224–1238

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge constructive comments from Prof. Sandro Conticelli and another anonymous reviewer. We also thank the Prof. Daniela Rubatto for editorial and scientific comments to help us improve this manuscript. This work was financed by the National Natural Science Foundation of China [Grant No. 41802054] and also supported from Grant Nos. 41902046 and 41772052, Natural Science Foundation of Shannxi Grant. 2019JQ-719 and China Postdoctoral Science Special Foundation Grant. 2019T120937 and Foundation Grant. 2018M643713. Thanks for the field work help from Senior engineer Chengmin Yan and engineer Yawei Wang in the Yunnan Bureau Geological Mineral Resource and Dr. Xiangyu Gao in the Ocean University of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-Zhi Zhu or Shao-Cong Lai.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, RZ., Słaby, E., Lai, SC. et al. High-K calc-alkaline to shoshonitic intrusions in SE Tibet: implications for metasomatized lithospheric mantle beneath an active continental margin. Contrib Mineral Petrol 176, 85 (2021). https://doi.org/10.1007/s00410-021-01843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01843-z

Keywords

Navigation