Download citation
Download citation
link to html
The synthesis, crystal structure and spectroscopic and electronic properties of N-(2-methyl-5-nitro­phen­yl)-4-(pyridin-2-yl)pyrimidin-2-amine (NPPA), C16H13N5O2, a potential template for drug design against chronic myelogenous leukemia (CML), is reported. The design and construction of the target mol­ecule were carried out starting from the guanidinium nitrate salt (previously synthesized) and the corresponding enaminone. X-ray diffraction analysis and a study of the Hirshfeld surfaces revealed important inter­actions between the nitro-group O atoms and the H atoms of the pyridine and pyrimidine rings. A crystalline ordering in layers, by the stacking of rings through inter­actions of the π–π type, was observed and confirmed by a study of the shape-index surfaces and dispersion energy calculations. Qu­anti­tative electrostatic potential studies revealed the most positive value of the mol­ecule on regions close to the N—H groups (34.8 kcal mol−1); nevertheless, steric impediments and the planarity of the mol­ecule do not allow the formation of hydrogen bonds from this group. This inter­action is however activated when the mol­ecule takes on a new extended conformation in the active pocket of the enzyme kinase (PDB ID 2hyy), inter­acting with protein residues that are fundamental in the inhibition process of CML. The most negative values of the mol­ecule are seen in regions close to the nitro group (−35.4 and −34.0 kcal mol−1). A mol­ecular docking study revealed an energy affinity of ΔG = −10.3 kcal mol−1 for NPPA which, despite not having a more negative value than the control mol­ecule (Imatinib; ΔG = −12.8 kcal mol−1), shows great potential to be used as a template for new drugs against CML.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621009487/eq3001sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621009487/eq3001Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621009487/eq3001Isup3.cml
Supplementary material

CCDC reference: 2109438

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
C16H13N5O2F(000) = 640
Mr = 307.31Dx = 1.489 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.0616 (5) ÅCell parameters from 4950 reflections
b = 17.8873 (8) Åθ = 5.0–73.1°
c = 9.5504 (4) ŵ = 0.85 mm1
β = 95.490 (4)°T = 123 K
V = 1370.85 (12) Å3Block, brown
Z = 40.45 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 73.1°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 79
Tmin = 0.687, Tmax = 1.000k = 1821
4948 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.3901P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-H atoms were modelled anisotropically and the structure was refined to convergence using SHELXL (Sheldrick, 2015) as included in WinGx software (Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.16103 (14)1.01117 (7)0.92354 (12)0.0339 (3)
O20.99304 (18)1.07275 (7)0.77704 (15)0.0469 (4)
N10.51884 (16)0.91344 (7)0.27391 (14)0.0287 (3)
N20.67099 (15)1.00859 (7)0.40847 (13)0.0242 (3)
N30.59142 (16)1.19155 (7)0.25969 (13)0.0267 (3)
N40.69772 (17)0.88107 (7)0.46299 (14)0.0274 (3)
N51.05088 (17)1.01392 (7)0.82592 (15)0.0293 (3)
C10.62803 (18)0.93787 (9)0.37969 (15)0.0247 (3)
C20.4500 (2)0.96675 (9)0.19020 (17)0.0304 (3)
H20.37320.95230.11330.036*
C30.48455 (19)1.04235 (9)0.20924 (16)0.0284 (3)
H30.43311.07930.14820.034*
C40.59806 (18)1.06101 (8)0.32205 (15)0.0242 (3)
C50.64673 (18)1.14002 (8)0.35555 (15)0.0242 (3)
C60.74363 (18)1.15826 (9)0.47974 (15)0.0264 (3)
H60.77981.12050.54570.032*
C70.78625 (19)1.23231 (9)0.50530 (16)0.0286 (3)
H70.85251.24620.58890.034*
C80.73079 (19)1.28577 (9)0.40709 (17)0.0285 (3)
H80.75801.33700.42160.034*
C90.6348 (2)1.26264 (9)0.28737 (16)0.0282 (3)
H90.59711.29960.22030.034*
C100.80883 (18)0.88211 (8)0.58471 (15)0.0240 (3)
C110.87791 (18)0.94771 (8)0.64248 (16)0.0256 (3)
H110.85310.99450.59840.031*
C120.98348 (18)0.94365 (8)0.76537 (16)0.0252 (3)
C131.02617 (19)0.87739 (9)0.83338 (16)0.0277 (3)
H131.09910.87630.91760.033*
C140.9580 (2)0.81246 (8)0.77344 (16)0.0273 (3)
H140.98600.76600.81780.033*
C150.85026 (18)0.81275 (8)0.65066 (16)0.0250 (3)
C160.7805 (2)0.74006 (8)0.59130 (17)0.0293 (3)
H1610.81890.69890.65400.044*
H1620.81880.73180.49820.044*
H1630.65850.74210.58310.044*
H4N0.660 (2)0.8382 (12)0.435 (2)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0339 (6)0.0326 (6)0.0330 (6)0.0025 (5)0.0075 (5)0.0019 (5)
O20.0614 (8)0.0200 (6)0.0536 (8)0.0030 (6)0.0236 (6)0.0029 (5)
N10.0318 (7)0.0229 (7)0.0306 (7)0.0008 (5)0.0018 (5)0.0026 (5)
N20.0276 (6)0.0199 (6)0.0248 (6)0.0002 (5)0.0006 (5)0.0001 (5)
N30.0315 (6)0.0217 (6)0.0265 (6)0.0032 (5)0.0004 (5)0.0017 (5)
N40.0343 (7)0.0159 (6)0.0308 (7)0.0024 (5)0.0036 (5)0.0014 (5)
N50.0331 (7)0.0229 (7)0.0310 (7)0.0021 (5)0.0014 (5)0.0006 (5)
C10.0265 (7)0.0225 (7)0.0249 (7)0.0012 (5)0.0021 (5)0.0013 (5)
C20.0314 (8)0.0294 (8)0.0289 (8)0.0007 (6)0.0048 (6)0.0037 (6)
C30.0316 (8)0.0255 (8)0.0273 (7)0.0041 (6)0.0014 (6)0.0020 (6)
C40.0265 (7)0.0215 (7)0.0251 (7)0.0014 (6)0.0045 (6)0.0002 (5)
C50.0256 (7)0.0213 (7)0.0261 (7)0.0027 (5)0.0045 (6)0.0016 (5)
C60.0302 (7)0.0225 (7)0.0263 (7)0.0024 (6)0.0011 (6)0.0030 (6)
C70.0297 (7)0.0275 (8)0.0279 (7)0.0002 (6)0.0012 (6)0.0023 (6)
C80.0324 (8)0.0192 (7)0.0344 (8)0.0001 (6)0.0051 (6)0.0013 (6)
C90.0339 (8)0.0207 (7)0.0298 (8)0.0037 (6)0.0024 (6)0.0049 (6)
C100.0254 (7)0.0206 (7)0.0259 (7)0.0008 (5)0.0033 (6)0.0005 (5)
C110.0290 (7)0.0186 (7)0.0288 (7)0.0011 (6)0.0006 (6)0.0032 (5)
C120.0266 (7)0.0202 (7)0.0288 (7)0.0007 (6)0.0021 (6)0.0001 (6)
C130.0308 (7)0.0257 (8)0.0263 (7)0.0011 (6)0.0002 (6)0.0030 (6)
C140.0335 (8)0.0206 (7)0.0281 (7)0.0028 (6)0.0041 (6)0.0046 (5)
C150.0286 (7)0.0187 (7)0.0286 (7)0.0011 (5)0.0073 (6)0.0011 (5)
C160.0392 (8)0.0185 (7)0.0302 (8)0.0000 (6)0.0035 (6)0.0012 (6)
Geometric parameters (Å, º) top
O1—N51.2255 (18)C6—C71.384 (2)
O2—N51.2252 (18)C6—H60.9500
N1—C21.331 (2)C7—C81.383 (2)
N1—C11.348 (2)C7—H70.9500
N2—N20.000 (2)C8—C91.381 (2)
N2—C11.3333 (19)C8—H80.9500
N2—C41.3466 (19)C9—H90.9500
N3—C91.338 (2)C10—C111.390 (2)
N3—C51.3448 (19)C10—C151.417 (2)
N4—C11.377 (2)C11—C121.384 (2)
N4—C101.398 (2)C11—H110.9500
N4—H4N0.86 (2)C12—C131.379 (2)
N5—C121.4661 (19)C13—C141.385 (2)
C1—N21.3333 (19)C13—H130.9500
C2—C31.389 (2)C14—C151.391 (2)
C2—H20.9500C14—H140.9500
C3—C41.386 (2)C15—C161.506 (2)
C3—H30.9500C16—H1610.9800
C4—N21.3466 (19)C16—H1620.9800
C4—C51.493 (2)C16—H1630.9800
C5—C61.395 (2)
C2—N1—C1115.01 (13)C9—C8—C7118.25 (14)
C1—N2—C4116.41 (13)C9—C8—H8120.9
C9—N3—C5116.97 (13)C7—C8—H8120.9
C1—N4—C10131.63 (13)N3—C9—C8124.27 (14)
C1—N4—H4N111.4 (13)N3—C9—H9117.9
C10—N4—H4N116.9 (13)C8—C9—H9117.9
O2—N5—O1123.09 (13)C11—C10—N4122.80 (13)
O2—N5—C12118.23 (13)C11—C10—C15119.62 (14)
O1—N5—C12118.68 (13)N4—C10—C15117.58 (13)
N2—C1—N1126.89 (14)C12—C11—C10118.87 (14)
N2—C1—N4119.83 (13)C12—C11—H11120.6
N1—C1—N4113.27 (13)C10—C11—H11120.6
N1—C2—C3123.51 (14)C13—C12—C11123.35 (14)
N1—C2—H2118.2C13—C12—N5118.99 (14)
C3—C2—H2118.2C11—C12—N5117.65 (13)
C4—C3—C2116.44 (14)C12—C13—C14117.05 (14)
C4—C3—H3121.8C12—C13—H13121.5
C2—C3—H3121.8C14—C13—H13121.5
N2—C4—C3121.73 (14)C13—C14—C15122.44 (14)
N2—C4—C5115.94 (13)C13—C14—H14118.8
C3—C4—C5122.34 (14)C15—C14—H14118.8
N3—C5—C6122.73 (14)C14—C15—C10118.66 (14)
N3—C5—C4116.08 (13)C14—C15—C16119.66 (13)
C6—C5—C4121.19 (14)C10—C15—C16121.68 (14)
C7—C6—C5118.88 (14)C15—C16—H161109.5
C7—C6—H6120.6C15—C16—H162109.5
C5—C6—H6120.6H161—C16—H162109.5
C8—C7—C6118.89 (14)C15—C16—H163109.5
C8—C7—H7120.6H161—C16—H163109.5
C6—C7—H7120.6H162—C16—H163109.5
C4—N2—C1—N20 (100)N2—C4—C5—C68.5 (2)
N2—N2—C1—N10.0 (3)C3—C4—C5—C6171.36 (14)
C4—N2—C1—N10.4 (2)N3—C5—C6—C70.6 (2)
N2—N2—C1—N40.0 (3)C4—C5—C6—C7179.57 (13)
C4—N2—C1—N4179.78 (13)C5—C6—C7—C80.2 (2)
C2—N1—C1—N20.8 (2)C6—C7—C8—C90.0 (2)
C2—N1—C1—N20.8 (2)C5—N3—C9—C80.3 (2)
C2—N1—C1—N4179.37 (13)C7—C8—C9—N30.0 (2)
C10—N4—C1—N22.9 (2)C1—N4—C10—C113.0 (3)
C10—N4—C1—N22.9 (2)C1—N4—C10—C15176.64 (14)
C10—N4—C1—N1176.90 (14)N4—C10—C11—C12178.33 (13)
C1—N1—C2—C30.8 (2)C15—C10—C11—C121.3 (2)
N1—C2—C3—C40.4 (2)C10—C11—C12—C130.9 (2)
C1—N2—C4—N20 (100)C10—C11—C12—N5178.38 (13)
N2—N2—C4—C30.0 (3)O2—N5—C12—C13169.19 (15)
C1—N2—C4—C30.0 (2)O1—N5—C12—C1310.2 (2)
N2—N2—C4—C50.0 (3)O2—N5—C12—C1110.1 (2)
C1—N2—C4—C5179.83 (12)O1—N5—C12—C11170.51 (14)
C2—C3—C4—N20.0 (2)C11—C12—C13—C140.1 (2)
C2—C3—C4—N20.0 (2)N5—C12—C13—C14179.22 (13)
C2—C3—C4—C5179.82 (14)C12—C13—C14—C150.4 (2)
C9—N3—C5—C60.6 (2)C13—C14—C15—C100.0 (2)
C9—N3—C5—C4179.53 (13)C13—C14—C15—C16179.92 (14)
N2—C4—C5—N3171.65 (13)C11—C10—C15—C140.9 (2)
N2—C4—C5—N3171.65 (13)N4—C10—C15—C14178.77 (13)
C3—C4—C5—N38.5 (2)C11—C10—C15—C16179.22 (14)
N2—C4—C5—C68.5 (2)N4—C10—C15—C161.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.593.3777 (19)140
C9—H9···O2ii0.952.513.1565 (19)125
C11—H11···N20.952.242.8723 (19)124
Symmetry codes: (i) x1, y, z1; (ii) x1/2, y+5/2, z1/2.
Interaction energies of pairs of molecules (kJ mol-1) obtained from energy lattice calculations for NPPA top
ColourNSymmetry codeRElectron densityEeleEpolEdispErepEtot
i2-x+1/2, y+1/2, -z+1/213.04B3LYP/6-31G(d,p)0.20.0-1.10.0-0.8
ii1-x, -y, -z18.15B3LYP/6-31G(d,p)0.00.00.10.0-0.1
iii1-x, -y, -z15.22B3LYP/6-31G(d,p)0.00.0-0.30.0-0.2
iv2x+1/2, -y+1/2, z+1/210.51B3LYP/6-31G(d,p)-14.3-4.1-2023.5-21.0
v2x, y, z11.89B3LYP/6-31G(d,p)-4.9-1.4-5.85.1-8.2
vi2x, y, z17.89B3LYP/6-31G(d,p)0.20.0-0.10.00.1
vii1-x, -y, -z10.54B3LYP/6-31G(d,p)-0.9-0.2-8.72.3-7.3
viii2-x+1/2, y+1/2, -z+1/210.35B3LYP/6-31G(d,p)-6.8-1.6-20.115.5-16.3
ix1-x, -y, -z18.00B3LYP/6-31G(d,p)0.00.0-0.10.0-0.1
x2x+1/2, -y+1/2, z+1/210.97B3LYP/6-31G(d,p)-4.1-2.4-18.413.2-14.0
xi2-x+1/2, y+1/2, -z+1/212.31B3LYP/6-31G(d,p)-2.4-0.2-1.20.0-3.7
xii1-x, -y, -z3.74B3LYP/6-31G(d,p)-7.8-2.8-99.254.4-63.1
xiii1-x, -y, -z4.39B3LYP/6-31G(d,p)-13.8-2.3-95.456.4-64.6
xiv2-x+1/2, y+1/2, -z+1/29.96B3LYP/6-31G(d,p)-5.3-0.9-18.211.4-15.1
xv1-x, -y, -z9.48B3LYP/6-31G(d,p)-5.4-2.3-16.18.3-16.4
xvi1-x ,-y, -z18.69B3LYP/6-31G(d,p)0.40.0-0.10.00.3
xvii1-x, -y, -z18.54B3LYP/6-31G(d,p)0.40.0-0.10.00.3
xviii1-x, -y, -z14.14B3LYP/6-31G(d,p)1.3-0.1-0.40.01.0
Notes: (*) scaling factors used for the determination of the total energy Etot: Eele = 1.057, Epol = 0.740, Edis = 0.871 and Erep = 0.618, R is the distance between molecule centroids (Å), N is the number of pairs of molecules in the cluster with that particular interaction energy.
IR assignments and distribution of percent potential energy (%PED) top
Assignments (PED%)Exp (cm-1)6311G++(d,p) (cm-1)
Without sc.Sc.
ν NH (100)344836313481
ν CH (99)314532883152
ν CH (91)309031152986
ν CH (100)306330542928
ν CC (55)157816551587
ν CC (14) + ν NC (12)155316191553
νas ON (59)151815751510
ν ON (16) + β HCC (22)147415571492
β HCN (56)145215141452
β HCC (42) + β HCH(78)+ τ HCCC(15)143014911429
ν NC (43)139914591399
β HCN (42)138014351376
νs ON (64)134213671310
ν CC (12)130813381283
ν NC (37) + β HCN(19)128513221267
ν NC (30) + ν CC(10)126312801227
ν NC (34) + β HCN(10)123812641212
β CNC(51)111511301083
ν CC (30) + β HCC (50)109611191073
ν CC (33) + β HCH (11)107710921047
ν CC (45)105510651021
ν CC (21) + β CCC (45)9891012970
ν NC (10) + τ HCCC (13) + β CCC(17)963981941
τ HCCC (81)888924886
τ HCNC (76)847880843
δ ONO (43) + ν ON(11)825846811
τ HCCC (79)800831797
τ HCCC (70)781819785
β CNC (52) + ν CC(11)742768736
τ HCCC (10) + τ HCCN(69)734760729
γ CCNC (70)649687659
β CCC (68)617632606
ν is stretching, β is in-plane deformation, δ is scissors, γ is out-of-plane deformation, τ is torsion, s is symmetric, as is asymmetric, r is rocking and t is twisting.
The most relevant hydrogen bonds (Å, °) formed by the protein residues of 2HYY with imatinib and NPPA top
ImatinibNPPA
ResidueAmino acidH···AD···AD—H···AH···AD···AD—H···A
286CGlu2.243.09143.11
315CThr2.343.01124.552.463.19143.37
318CMet2.002.94158.24
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds