Skip to main content

Advertisement

Log in

Characterization of bacterial community structure in two alcyonacean soft corals (Litophyton sp. and Sinularia sp.) from Chuuk, Micronesia

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Microbes in the coral holobiont play important roles in nitrogen fixation, carbon supply, antibiotic production, mucus recycling, and food supply to maintain homeostasis in corals. However, microbes can also induce coral diseases in response to environmental changes under non-optimal conditions. Therefore, studies of microbial communities are needed to understand the health statuses of corals in response to environmental changes. In this study, we performed 16S rDNA metabarcoding to investigate the bacterial communities in two healthy alcyonacean soft coral species (Sinularia sp. and Litophyton sp.) inhabiting the coast of Weno Island (Chuuk, Micronesia) and in ambient seawater. We identified 18 bacterial phyla, 24 classes, 54 orders, 109 families, and 222 genera associated with the two corals and seawater. The bacterial communities differed in the corals and seawater. The bacterial community in Sinularia sp. was dominated by the genus Spirochaeta in Spirochaetaceae (63.9% relative abundance), followed by Endozoicomonas (10%). In Litophyton sp., the bacterial community also contained Spirochaeta (19.5%) and Endozoicomonas (4.7%), although Cellvibrionaceae (23.7%) was dominant and other groups such as Rhizobiales (11.5%) and Rhodospirillales (8.7%) were evenly distributed. In ambient seawater, the predominant bacteria were Pelagibacter (29.2%), Rhodobacteraceae (15.5%), Prochlorococcus (11.3%), and Vibrio (5.8%), which are distinct from the species in the two coral species. The microbial communities between the two alcyonacean soft corals and seawater were different, and the microbial community differences were coral species-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou El-Kassem LT, Hawas UW, El-Desouky SK, Al-Farawati R (2018) Sesquiterpenes from the Saudi Red Sea: Litophyton arboreum with their cytotoxic and antimicrobial activities. Z Naturforsch C J Biosci 73:9–14

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Apprill A, Marlow HQ, Martindale MQ, Rappe MS (2009) The onset of microbial associations in the coral Pocillopora meandrina. ISME J 3:685–699

    Article  PubMed  Google Scholar 

  • Baker BJ, Lazar CS, Teske AP, Dick GJ (2015) Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D, Pita L, Pogoreutz C, Rädecker N, Saad MM, Schmitz RA, Schulenburg H, Voolstra CR, Weiland-Bräuer N, Ziegler M, Bosch TCG (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1–19

    Article  PubMed  Google Scholar 

  • Barott KL, Rodriguez-Brito B, Janouskovec J, Marhaver KL, Smith JE, Keeling P, Rohwer FL (2011) Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol 13:1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Biller SJ, Berube PM, Lindell D, Chisholm SW (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27

    Article  CAS  PubMed  Google Scholar 

  • Blackall LL, Wilson B, van Oppen MJH (2015) Coral—the world’s most diverse symbiotic ecosystem. Mol Ecol 24:5330–5347

    Article  PubMed  Google Scholar 

  • Bourne DG, Webster NS (2013) Coral reef bacterial communities. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp 163–187

    Chapter  Google Scholar 

  • Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, Aurelle D, Mitta G, Toulza E (2018) Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. Microbiome 6:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Brito TL, Campos AB, Bastiaan von Meijenfeldt FA, Daniel JP, Ribeiro GB, Silva GGZ, Wilke DV, de Moraes DT, Dutilh BE, Meirelles PM, Trindade-Silva AE (2018) The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei. PLoS ONE 13:e0200437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  • Ceh J, Van Keulen M, Bourne DG (2011) Coral-associated bacterial communities on Ningaloo Reef, Western Australia. FEMS Microbiol Ecol 75:134–144

    Article  CAS  PubMed  Google Scholar 

  • Charon NW, Greenberg EP, Koopman MBH, Limberger RJ (1992) Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res Microbiol 143:597–603

    Article  CAS  PubMed  Google Scholar 

  • Chen W-t, Li Y, Guo Y-w (2012) Terpenoids of Sinularia soft corals: chemistry and bioactivity. Acta Pharm Sin B 2:227–237

    Article  CAS  Google Scholar 

  • Clarke KR, Clarke K, Gorley K, Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial

  • Closek CJ, Sunagawa S, DeSalvo MK, Piceno YM, DeSantis TZ, Brodie EL, Weber MX, Voolstra CR, Andersen GL, Medina M (2014) Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata. Isme j 8:2411–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of Bacterial Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces. Appl Environ Microbiol 68:2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GBIF.org (2020) GBIF Home Page

  • Gochfeld DJ, Ankisetty S, Slattery M (2015) Proteomic profiling of healthy and diseased hybrid soft corals Sinularia maxima × S. polydactyla. Dis Aquat Organ 116:133–141

    Article  PubMed  Google Scholar 

  • Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE (2010) Black Box Chimera Check (B2C2): A windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol J 4:47–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MA, Stone RP, McLaughlin MR, Kellogg CA (2011) Microbial consortia of gorgonian corals from the Aleutian islands. FEMS Microbiol Ecol 76:109–120

    Article  CAS  PubMed  Google Scholar 

  • Grote D, Dahse H-M, Seifert K (2008) Furanocembranoids from the soft corals Sinularia asterolobata and Litophyton arboreum. Chem Biodivers 5:2449–2456

    Article  CAS  PubMed  Google Scholar 

  • Hall I (2020) The Federated States of Micronesia: Sixth national report to the convention on biological diversity. United Nations Environment Programme and the Global Environment Facility, The Federated States of Micronesia

  • Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. mBio 7:e00560-00516

    Article  PubMed  PubMed Central  Google Scholar 

  • Holm JB, Heidelberg KB (2016) Microbiomes of Muricea californica and M. fruticosa: Comparative analyses of two co-occurring eastern Pacific octocorals. Front Microbiol 7:917

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung SW, Kang Y-H, Baek SH, Lim D, Han M-S (2013) Biological control of Stephanodiscus hantzschii (Bacillariophyceae) blooms in a field mesocosm by the immobilized algicidal bacterium Pseudomonas fluorescens HYK0210-SK09. J Appl Phycol 25:41–50

    Article  Google Scholar 

  • Jung SW, Kang D, Kim HJ, Shin HH, Park JS, Park SY, Lee TK (2018) Mapping distribution of cysts of recent dinoflagellate and Cochlodinium polykrikoides using next-generation sequencing and morphological approaches in South Sea. Korea Sci Rep 8:7011

    Article  PubMed  CAS  Google Scholar 

  • Jung SW, Kang J, Park JS, Joo HM, Suh SS, Kang D, Lee TK, Kim HJ (2021) Dynamic bacterial community response to Akashiwo sanguinea (Dinophyceae) bloom in indoor marine microcosms. Sci Rep 11:6983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, Park JS, Jung SW, Kim H-J, Joo HM, Kang D, Seo H, Kim S, Jang M-C, Lee K-W, Jin OhS, Lee S, Lee T-K (2021) Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Mol Ecol 30:207–221

    Article  CAS  PubMed  Google Scholar 

  • Kellogg CA (2019) Microbiomes of stony and soft deep-sea corals share rare core bacteria. Microbiome 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Lisle JT, Galkiewicz JP (2009) Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico. Appl Environ Microbiol 75:2294–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Jung SW, Lim D-I, Jang M-C, Lee T-K, Shin K, Ki J-S (2016) Effects of temperature and nutrients on changes in genetic diversity of bacterioplankton communities in a semi-closed bay, South Korea. Mar Pollut Bull 106:139–148

    Article  CAS  PubMed  Google Scholar 

  • Kimes NE, Van Nostrand JD, Weil E, Zhou J, Morris PJ (2010) Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ Microbiol 12:541–556

    Article  CAS  PubMed  Google Scholar 

  • Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Royal Soc 280:20122328

    Google Scholar 

  • Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW (2016) Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species. Front Microbiol 7:458

    Article  PubMed  PubMed Central  Google Scholar 

  • Lema KA, Willis BL, Bourne DG (2012) Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol 78:3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP (2007) Coral reef bleaching and global climate change: Can corals survive the next century? Proc Natl Acad Sci USA 104:5259–5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Morrow KM, Pankey SM, Noonan SHC (2018) Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J 12:813–824

    Article  CAS  PubMed  Google Scholar 

  • Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living Spirochetes. Science 292:2495

    Article  CAS  PubMed  Google Scholar 

  • Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ Microbiol Rep 3:651–660

    Article  CAS  PubMed  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726

    Article  CAS  PubMed  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Lucena T, Arahal DR, Sanz-Sáez I, Acinas SG, Sánchez O, Aznar R, Pedrós-Alió C, Pujalte MJ (2020) Thalassocella blandensis gen. nov., sp. nov., a novel member of the family Cellvibrionaceae. Int J Syst Evol Microbiol 70:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  CAS  PubMed  Google Scholar 

  • Morrow KM, Moss AG, Chadwick NE, Liles MR (2012) Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol 78:6438–6449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50:662–674

    Article  PubMed  Google Scholar 

  • Neave MJ, Michell CT, Apprill A, Voolstra CR (2014) Whole-genome sequences of three symbiotic Endozoicomonas bacteria. Genome Announc 2:e00802-00814

    Article  PubMed  PubMed Central  Google Scholar 

  • Neave MJ, Michell CT, Apprill A, Voolstra CR (2017) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 7:40579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochsenkühn MA, Schmitt-Kopplin P, Harir M, Amin SA (2018) Coral metabolite gradients affect microbial community structures and act as a disease cue. Commun Biol 1:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: Community ecology package. R package version 1.17–4. URL http://CRANR-project.org/package=vegan

  • Olson ND, Lesser MP (2013) Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa. Arch Microbiol 195:853–859

    Article  CAS  PubMed  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR (2020) Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J 14:325–334

    Article  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497

    Article  PubMed  CAS  Google Scholar 

  • Raina J-B, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina J-B, Dinsdale EA, Willis BL, Bourne DG (2010) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18:101–108

    Article  CAS  PubMed  Google Scholar 

  • Raina J-B, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL, Motti CA (2013) DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677–680

    Article  CAS  PubMed  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, Ying H, Baker A, Bell SC, Morrow KM, Ragan MA, Miller DJ, Forêt S, Ball E, Beeden R, Berumen M, Aranda M, Ravasi T, Bongaerts P, Hoegh-Guldberg O, Cooke I, Leggat B, Sprungala S, Fitzgerald A, Shang C, Lundgren P, Fyffe T, Rubino F, van Oppen M, Weynberg K, Robbins SJ, Singleton CM, Xin Chan C, Messer LF, Geers AU, Ying H, Baker A, Bell SC, Morrow KM, Ragan MA, Miller DJ, Foret S, Voolstra CR, Tyson GW, Bourne DG, Voolstra CR, Tyson GW, Bourne DG, ReFuGe C (2019) A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat Microbiol 4:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Roder C, Arif C, Daniels C, Weil E, Voolstra CR (2014) Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol Ecol 23:965–974

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosales SM, Clark AS, Huebner LK, Ruzicka RR, Muller EM (2020) Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front Microbiol 11:681

    Article  PubMed  PubMed Central  Google Scholar 

  • Sansupa C, Wahdan SF, Hossen S, Disayathanoowat T, Wubet T, Purahong W (2021) Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria? Appl Sci 11:688

    Article  CAS  Google Scholar 

  • Sekar R, Kaczmarsky LT, Richardson LL (2008) Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar Ecol Prog Ser 362:85–98

    Article  CAS  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiol Ecol 67:371–380

    Article  CAS  PubMed  Google Scholar 

  • Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990

    Article  CAS  PubMed  Google Scholar 

  • Spring S, Scheuner C, Göker M, Klenk H-P (2015) A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 6:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh SS, Park M, Hwang J, Lee S, Chung Y, Lee TK (2014) Distinct patterns of marine bacterial communities in the South and North Pacific Oceans. J Microbiol 52:834–841

    Article  CAS  PubMed  Google Scholar 

  • Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS ONE 5:e9554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sweet MJ, Croquer A, Bythell JC (2014) Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. Proc Royal Soc 281:20140094

    CAS  Google Scholar 

  • Tandon K, Lu C-Y, Chiang P-W, Wada N, Yang S-H, Chan Y-F, Chen P-Y, Chang H-Y, Chiou Y-J, Chou M-S, Chen W-M, Tang S-L (2020) Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J 14:1290–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JR, Rivera HE, Closek CJ, Medina M (2014) Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176

    PubMed  Google Scholar 

  • van de Water JA, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D, Ferrier-Pages C (2016) Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Sci Rep 6:27277

  • van de Water JAJM, Allemand D, Ferrier-Pagès C (2018) Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome 6:64

  • Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  PubMed  CAS  Google Scholar 

  • Vega Thurber R, Burkepile DE, Correa AM, Thurber AR, Shantz AA, Welsh R, Pritchard C, Rosales S (2012) Macroalgae decrease growth and alter microbial community structure of the reef-building coral Porites astreoides. PLoS ONE 7:e44246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber L, Apprill A (2020) Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS ONE 15:e0229442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster NS, Reusch TBH (2017) Microbial contributions to the persistence of coral reefs. ISME J 11:2167–2174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiegel JKW (2015) Xanthobacter Bergey's manual of systematics of archaea and bacteria. Wiley, Chichester, pp 1–22

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  PubMed  Google Scholar 

  • Wilson B, Aeby GS, Work TM, Bourne DG (2012) Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa. FEMS Microbiol Ecol 80:509–520

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ling J, Yang Q, Wen C, Yan Q, Sun H, Van Nostrand JD, Shi Z, Zhou J, Dong J (2015) The functional gene composition and metabolic potential of coral-associated microbial communities. Sci Rep 5:16191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The genomic DNA samples of corals and seawaters were obtained from the Library of Marine Samples, Korea Institute of Ocean Science & Technology, Republic of Korea. This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2017M3A9E4072753) and entitled “Development of technology for mass production of useful marine bioproducts” by the Research Program of Korea Institute of Ocean Science and Technology (PE99922).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taek-Kyun Lee or Seung Won Jung.

Ethics declarations

Conflict of interest

There are no conflicts of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 506 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.S., Han, J., Suh, SS. et al. Characterization of bacterial community structure in two alcyonacean soft corals (Litophyton sp. and Sinularia sp.) from Chuuk, Micronesia. Coral Reefs 41, 563–574 (2022). https://doi.org/10.1007/s00338-021-02176-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02176-w

Keywords

Navigation