Skip to main content
Log in

Spectral Property of Self-Affine Measures on \(\pmb {\mathbb {R}^n}\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

For any integer \(m>1\), let \(D\subset {{\mathbb {Z}}}^n\) be a finite digit set such that \({{\mathcal {Z}}}(m_D)=\cup _{i=1}^k{{\mathcal {Z}}}_i\) for some finite integer k, \(({{\mathcal {Z}}}_i-{{\mathcal {Z}}}_i)\setminus \mathbb {Z}^n\subset {{\mathcal {Z}}}_i\subset (m^{-1}{{\mathbb {Z}}}\setminus {{\mathbb {Z}}})^n\) and \({{\mathcal {Z}}}_i\not \subset ({m'}^{-1}{{\mathbb {Z}}}\setminus {{\mathbb {Z}}})^n\) for all \(0<m'<m\), where \({{\mathcal {Z}}}(m_D)=\big \{x:\sum _{d\in D}e^{2\pi i\left\langle d,x \right\rangle }=0\big \}\). Let \(M={\hbox {diag}}[b_1,\ldots ,b_n]\) be a real expansive diagonal matrix and \(\mu _{M, D}\) be the self-affine measure on \({{\mathbb {R}}}^n\) defined by \(\mu _{M,D}(\cdot )=\frac{1}{|D|}\sum _{d\in D}\mu _{M, D}(M(\cdot )-d)\). In this paper, we first give the sufficient and necessary condition for \(L^2(\mu _{M,D})\) to contain an infinite orthogonal exponentials for any integer \(m>1\). Furthermore, we show that, if m is a prime, \(\mu _{M, D}\) is a spectral measure if and only if \(m|b_i\), \(i=1,2,\ldots ,n\). This extends known results in [5, 6, 28].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.X., He, X.G., Li, H.X.: Spectrality of infinite Bernoulli convolutions. J. Funct. Anal. 269, 1571–1590 (2015)

    Article  MathSciNet  Google Scholar 

  2. Dai, X.R.: When does a Bernoulli convolution admit a spectrum? Adv. Math. 231, 1681–1693 (2012)

    Article  MathSciNet  Google Scholar 

  3. Dai, X.R.: Spectra of Cantor measures. Math. Ann. 366, 1621–1647 (2016)

    Article  MathSciNet  Google Scholar 

  4. Dai, X.R., He, X.G., Lai, C.K.: Spectral property of Cantor measures with consecutive digits. Adv. Math. 242, 187–208 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dai, X.R., He, X.G., Lau, K.S.: On spectral N-Bernoulli measures. Adv. Math. 259, 511–531 (2014)

    Article  MathSciNet  Google Scholar 

  6. Dai, X.R., Fu, X.Y., Yan, Z.H.: Spectrality of self-affine Sierpinski-type measures on \(\mathbb{R}^2\). Appl. Comput. Harmon. Anal. 52, 63–81 (2021)

    Article  MathSciNet  Google Scholar 

  7. Deng, Q.R.: Spectrality of one dimensional self-similar measures with consecutive digits. J. Math. Anal. Appl. 409, 331–346 (2014)

    Article  MathSciNet  Google Scholar 

  8. Deng, Q.R., Lau, K.S.: Sierpinski-type spectral self-similar measures. J. Funct. Anal. 269, 1310–1326 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dutkay, D., Jorgensen, P.: Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256, 801–823 (2007)

    Article  MathSciNet  Google Scholar 

  10. Dutkay, D., Jorgensen, P.: Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247, 110–137 (2007)

    Article  MathSciNet  Google Scholar 

  11. Dutkay, D., Han, D.G., Sun, Q.Y.: On spectra of a Cantor measure. Adv. Math. 221, 251–276 (2009)

    Article  MathSciNet  Google Scholar 

  12. Dutkay, D., Haussermann, J., Lai, C.K.: Hadamard triples generate self-affine spectral measures. Trans. Am. Math. Soc. 371, 1439–1481 (2019)

    Article  MathSciNet  Google Scholar 

  13. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  Google Scholar 

  14. He, X.G., Tang, M.W., Wu, Z.Y.: Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures. J. Funct. Anal. 277, 3688–3722 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hu, T.Y., Lau, K.S.: Spectral property of the Bernoulli convolutions. Adv. Math. 219, 554–567 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  17. Jorgenson, P., Pederson, S.: Dense analytic subspaces in fractal \(L^2\)-spaces. J. Anal. Math. 75, 185–228 (1998)

    Article  MathSciNet  Google Scholar 

  18. Kolountzakis, M., Matolcsi, M.: Tiles with no spectra. Forum Math. 18, 519–528 (2006)

    Article  MathSciNet  Google Scholar 

  19. Łaba, I., Wang, Y.: On spectral Cantor measures. J. Funct. Anal. 193, 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  20. Lagarias, J., Wang, Y.: Tiling the line with translates of one tile. Invent. Math. 124, 341–365 (1996)

    Article  MathSciNet  Google Scholar 

  21. Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. Acta Math. (to appear) arXiv:1904.12262

  22. Li, J.L.: Non-spectral problem for a class of planar self-affine measures. J. Funct. Anal. 255, 3125–3148 (2008)

    Article  MathSciNet  Google Scholar 

  23. Li, J.L.: Spectra of a class of self-affine measures. J. Funct. Anal. 260, 1086–1095 (2011)

    Article  MathSciNet  Google Scholar 

  24. Liu, J.C., Dong, X.H., Li, J.L.: Non-spectral problem for the self-affine measures. J. Funct. Anal. 273, 705–720 (2017)

    Article  MathSciNet  Google Scholar 

  25. Strichartz, R.: Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. 81, 209–238 (2000)

    Article  MathSciNet  Google Scholar 

  26. Tao, T.: Fuglede’s conjecture is false in 5 or higher dimensions. Math. Res. Lett. 11, 251–258 (2004)

    Article  MathSciNet  Google Scholar 

  27. Wang, Z.Y., Liu, J.C.: Non-spectrality of self-affine measures. J. Funct. Anal. 277, 3723–3736 (2019)

    Article  MathSciNet  Google Scholar 

  28. Wang, Z.Y., Wang, Z.M., Dong, X.H., Zhang, P.H.: Orthogonal exponential functions of self-similar measures with consecutive digits in \(\mathbb{R}\). J. Math. Anal. Appl. 467, 1048–1052 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their many very valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Liu.

Additional information

Communicated by Dorin Dutkay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported in part by the NNSF of China (Nos. 12001183, 12071125 and 11831007), the Hunan Provincial NSF (Nos. 2019JJ20012 and 2020JJ5097), the SRF of Hunan Provincial Education Department (Nos. 17B158 and 19B117)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, J. & Su, J. Spectral Property of Self-Affine Measures on \(\pmb {\mathbb {R}^n}\). J Fourier Anal Appl 27, 79 (2021). https://doi.org/10.1007/s00041-021-09883-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09883-6

Keywords

Mathematics Subject Classification

Navigation