Skip to main content
Log in

Love wave transference in piezomagnetic layered structure guided by an imperfect interface

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

The problem presents an analytical study of the wave transference in piezo-composite layer lying over an elastic substrate. The interface of the geometry is assumed to be imperfect. The imperfection is characterized by Linear Spring Model. Dynamics of the media taken are framed in form of direct Sturm–Liouville problem. Dispersion relations are found for both magnetically open and magnetically short case. Velocity profile of Love wave has been delineated through graphs for different affecting parameters (i.e., imperfection at the interface, layer thickness and heterogeneity in the substrate). It has been shown that the increase in these parameters increases the phase velocity of the Love wave. Further, layer thickness is noted to have a less effect on the velocity profile of the wave as compared to heterogeneity in the substrate. Moreover, a comparative study has been shown between the aforementioned cases with the variation in imperfect parameter. The velocity in open case is found to be higher than that of short case. The obtained results may provide guidance towards optimization of Surface Acoustic Wave devices and measurement of imperfections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, Hoboken (2011)

    Google Scholar 

  • Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)

    Article  Google Scholar 

  • Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mech. 228(3), 1071–1081 (2017)

    Article  Google Scholar 

  • Fan, H., Yang, J., Xu, L.: Piezoelectric waves near an imperfectly bonded interface between two half-spaces. Appl. Phys. Lett. 88(20), 203509 (2006)

    Article  Google Scholar 

  • Goyal, S., Sahu, S.A., Mondal, S.: Modelling of love-type wave propagation in piezomagnetic layer over a lossy viscoelastic substrate: Sturm–Liouville problem. Smart Mater. Struct. 28(5), 057001 (2019)

    Article  Google Scholar 

  • Goyal, S., Sahu, S., Mondal, S.: Influence of imperfect bonding on the reflection and transmission of QP-wave at the interface of two functionally graded piezoelectric materials. Wave Motion 92, 102431 (2020)

    Article  MathSciNet  Google Scholar 

  • Guha, S., Singh, A.K., Das, A.: Analysis on different types of imperfect interfaces between two dissimilar piezothermoelastic half-spaces on reflection and refraction phenomenon of plane waves. Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1610198

    Article  Google Scholar 

  • Huang, Y., Li, X.F.: Shear waves guided by the imperfect interface of two magnetoelectric materials. Ultrasonics 50(8), 750–757 (2010)

    Article  Google Scholar 

  • Huang, Y., Li, X.F., Lee, K.Y.: Interfacial shear horizontal (SH) waves propagating in a two-phase piezoelectric/piezomagnetic structure with an imperfect interface. Philos. Mag. Lett. 89(2), 95–103 (2009)

    Article  Google Scholar 

  • Kadota, M., Ito, S., Ito, Y., Hada, T., Okaguchi, K.: Magnetic sensor based on surface acoustic wave resonators. Jpn. J. Appl. Phys. 50(7S), 07HD07 (2011)

    Article  Google Scholar 

  • Kiełczyński, P.: Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides. Appl. Math. Model. 53, 419–432 (2018)

    Article  MathSciNet  Google Scholar 

  • Krause, P.C., Wasynczuk, O., Pekarek, S.D.: Electromechanical motion devices, vol. 90. Wiley, Hoboken (2012)

    Book  Google Scholar 

  • Li, L., Wei, P.J.: The piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids. J. Sound Vib. 333(8), 2312–2326 (2014)

    Article  Google Scholar 

  • Melkumyan, A., Mai, Y.W.: Influence of imperfect bonding on interface waves guided by piezoelectric/piezomagnetic composites. Philos. Mag. 88(23), 2965–2977 (2008)

    Article  Google Scholar 

  • Nie, G., Liu, J., Fang, X., An, Z.: Shear horizontal (SH) waves propagating in piezoelectric–piezomagnetic bilayer system with an imperfect interface. Acta Mech. 223(9), 1999–2009 (2012)

    Article  MathSciNet  Google Scholar 

  • Sahu, S.A., Baroi, J.: Analysis of surface wave behavior in corrugated piezomagnetic layer resting on inhomogeneous half-space. Mech. Adv. Mater. Struct. 26(7), 639–650 (2019)

    Article  Google Scholar 

  • Sahu, S.A., Singhal, A., Chaudhary, S.: Surface wave propagation in functionally graded piezoelectric material: an analytical solution. J. Intell. Mater. Syst. Struct. 29(3), 423–437 (2018)

    Article  Google Scholar 

  • Sahu, S.A., Goyal, S., Mondal, S.: Dynamics of Love-type waves in orthotropic layer under the influence of heterogeneity and corrugation. J. Solid Mech. 11(2), 475–485 (2019)

    Google Scholar 

  • Singh, A.K., Parween, Z., Kumar, S.: Love-type wave propagation in a corrugated piezoelectric structure. J. Intell. Mater. Syst. Struct. 27(19), 2616–2632 (2016)

    Article  Google Scholar 

  • Vashishth, A.K., Dahiya, A.: Shear waves in a piezoceramic layered structure. Acta Mech. 224(4), 727–744 (2013)

    Article  MathSciNet  Google Scholar 

  • Vashishth, A.K., Gupta, V.: Wave propagation in transversely isotropic porous piezoelectric materials. Int. J. Solids Struct. 46(20), 3620–3632 (2009)

    Article  Google Scholar 

  • Wei, W., Liu, J., Fang, D.: Shear horizontal surface waves in a piezoelectric-piezomagnetic coupled layered half-space. Int. J. Nonlinear Sci. 10(6), 767–778 (2009)

    Article  Google Scholar 

  • Yuan, L., Du, J., Ma, T., Wang, J.: Study on SH-SAW in imperfectly bonded piezoelectric structures loaded with viscous liquid. Acta Mech. 225(1), 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhou, Y.Y., Lü, C.F., Chen, W.Q.: Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos. Struct. 94(9), 2736–2745 (2012)

    Article  Google Scholar 

  • Zhou, H., Talbi, A., Tiercelin, N., Bou Matar, O.: Multilayer magnetostrictive structure-based surface acoustic wave devices. Appl. Phys. Lett. 104(11), 114101 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Indian Institute of Technology (ISM) Dhanbad for providing the fellowship to Ms. Suman Goyal and all the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev A. Sahu.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Appendices

Appendix A

$$ a_{11} = q_{1} \overline{c}_{44} \,,\,\,\,a_{13} = - h_{15}^{m} k\,,\,\,\,a_{14} = h_{15}^{m} k $$
$$ a_{23} = - \mu_{11} k\,\,,\,\,a_{24} = \mu_{11} k $$
$$ \begin{gathered} a_{31} = q_{1} \overline{c}_{44} cos(q_{1} h)\,,\,\,a_{32} = - q_{1} \overline{c}_{44} sin(q_{1} h)\,\,,\,\,a_{33} = - ke^{ - kh} ,\,\,a_{34} = ke^{kh} \,,\, \hfill \\ a_{35} = \mu^{e} me^{ - mh} \hfill \\ \end{gathered} $$
$$ \begin{gathered} a_{41} = \overline{c}_{44} q_{1} cos(q_{1} h) - s\frac{{\overline{c}_{44} }}{h}sin(q_{1} h)\,\,,\,\,a_{42} = - \left( {q_{1} sin(q_{1} h)\overline{c}_{44} + s\frac{{\overline{c}_{44} }}{h}cos(q_{1} h)} \right)\,,\,\,a_{43} = - h_{15}^{m} ke^{ - kh} \,\,, \hfill \\ a_{44} = h_{15}^{m} ke^{kh} ,\,\,a_{45} = s\frac{{\overline{c}_{44} }}{h}e^{ - mh} \hfill \\ \end{gathered} $$
$$ a_{51} = \frac{{h_{15}^{m} }}{{\mu_{11} }}sin(q_{1} h)\,,\,\,\,a_{52} = \frac{{h_{15}^{m} }}{{\mu_{11} }}cos(q_{1} h)\,,\,\,\,a_{53} = e^{ - kh} \,,\,\,\,a_{54} = e^{kh} $$

Appendix B

$$ b_{11} = q_{1} \overline{c}_{44} \,,\,\,\,b_{13} = - h_{15}^{m} k\,,\,\,\,b_{14} = h_{15}^{m} k $$
$$ b_{12} = \frac{{h_{15}^{m} }}{{\mu_{11} }}\,,\,\,\,b_{13} = 1\,,\,\,\,b_{14} = 1 $$
$$ \begin{gathered} b_{31} = q_{1} \overline{c}_{44} cos(q_{1} h)\,,\,\,b_{32} = - q_{1} \overline{c}_{44} sin(q_{1} h)\,\,,\,\,b_{33} = - ke^{ - kh} ,\,\,b_{34} = ke^{kh} \,,\, \hfill \\ b_{35} = \mu^{e} me^{ - mh} \hfill \\ \end{gathered} $$
$$ \begin{gathered} b_{41} = \overline{c}_{44} b_{1} cos(q_{1} h) - s\frac{{\overline{c}_{44} }}{h}sin(q_{1} h)\,\,,\,\,b_{42} = - \left( {q_{1} sin(q_{1} h)\overline{c}_{44} + s\frac{{\overline{c}_{44} }}{h}cos(q_{1} h)} \right)\,,\,\,b_{43} = - h_{15}^{m} ke^{ - kh} \,\,, \hfill \\ b_{44} = h_{15}^{m} ke^{kh} ,\,\,b_{45} = s\frac{{\overline{c}_{44} }}{h}e^{ - mh} \hfill \\ \end{gathered} $$
$$ b_{51} = \frac{{h_{15}^{m} }}{{\mu_{11} }}sin(q_{1} h)\,,\,\,\,b_{52} = \frac{{h_{15}^{m} }}{{\mu_{11} }}cos(q_{1} h)\,,\,\,\,b_{53} = e^{ - kh} \,,\,\,\,b_{54} = e^{kh} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Sahu, S.A. Love wave transference in piezomagnetic layered structure guided by an imperfect interface. Int J Geomath 12, 5 (2021). https://doi.org/10.1007/s13137-021-00173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-021-00173-3

Keywords

Mathematics subject classification

Navigation