Skip to main content

Advertisement

Log in

Poly (ethyl methacrylate) composites reinforced with modified and unmodified cellulose nanocrystals and its application as a denture resin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize cellulose nanocrystals (CNC) used to the preparation of nanocomposites and evaluate the influence of incorporating the CNC on flexural strength of a denture rebase resin. CNC were isolated from wood pulp by acid hydrolysis. In addition, maleic anhydride was used to superficially modify the CNCs. The modified (CNCmod) and unmodified nanocrystals (CNC) were suitably characterized and used separately as a reinforcement element in situ in a denture rebase resin consisting of poly ethyl methacrylate, at 0% (control group), 0.25%, 0.5%, 0.75% and 1%. The flexural strength of the groups was measured using a 3-point bending test with EMIC DL 2000 machine. AFM images showed that CNC and CNCmod samples presented nanoparticles with typical acicular shape and similar dimensions. A significant improvement of the flexural strength was obtained, even at low load levels, especially considering the nanoparticles with chemically modified surface. The incorporation of both modified and unmodified CNCs represents an alternative that can maximize the mechanical properties of acrylic resins and their respective dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data and material used to support the findings of this study are included within the article.

Code availability

Not applicable.

References

  1. Atwood DA (1971) Reduction of residual ridges: a major oral disease entity. J Prosthet Dent 26:266–279. https://doi.org/10.1016/0022-3913(71)90069-2

    Article  CAS  PubMed  Google Scholar 

  2. Arima T, Murata H, Hamada T (1996) Analysis of composition and structure of hard autopolymerizing reline resins. J Oral Rehabil 23:346–352. https://doi.org/10.1111/j.1365-2842.1996.tb00863.x

    Article  CAS  PubMed  Google Scholar 

  3. McCabe JF, Walls AWG (2008) Applied dental materials, 9th edn. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  4. Yoshida K, Kurogi T, Torisu T, Watanabe I, Murata H (2013) Effects of 2,2,2-trifluoroethyl methacrylate on properties of autopolymerized hard direct denture reline resins. Dent Mater J 32:744–752. https://doi.org/10.4012/dmj.2013-103

    Article  CAS  PubMed  Google Scholar 

  5. Arima T, Murata H, Hamada T (1995) Properties of highly cross-linked autopolymerizing reline acrylic resins. J Prosthet Dent 73:55–59. https://doi.org/10.1016/s0022-3913(05)80273-2

    Article  CAS  PubMed  Google Scholar 

  6. Lombardo CE, Canevarolo SV, Reis JM et al (2012) Effect of microwave irradiation and water storage on the viscoelastic properties of denture base and reline acrylic resins. J Mech Behav Biomed Mater 5:53–61. https://doi.org/10.1016/j.jmbbm.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  7. Pero AC, Barbosa DB, Marra J, Ruvolo-Filho AC, Compagnoni MA (2008) Influence of microwave polymerization method and thickness on porosity of acrylic resin. J Prosthodont 17:125–129. https://doi.org/10.1111/j.1532-849X.2007.00264.x

    Article  PubMed  Google Scholar 

  8. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38. https://doi.org/10.1016/j.dental.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  9. Vidotti HA, Manso AP, Leung V, ALdo Valle F Ko RM Carvalho (2015) Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio. Dent Mater 31:1132–1141. https://doi.org/10.1016/j.dental.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  10. Silvério H, Flauzino Neto W, Pasquini D (2013) Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. J Nanomater 1:1–9. https://doi.org/10.1155/2013/289641

    Article  CAS  Google Scholar 

  11. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32:1905–1915. https://doi.org/10.1002/pc.21224

    Article  CAS  Google Scholar 

  12. Rigg-Aguilar P, Moya R, Oporto-Velásquez GS, Vega-Baudrit J, Starbird R, Puente-Urbina A, Méndez D, Potosme LD, Esquivel M (2020) Micro- and nanofibrillated cellulose (MNFC) from pineapple (Ananas comosus) stems and their application on polyvinyl acetate (PVAc) and urea-formaldehyde (UF) wood adhesives. J Nanomater. https://doi.org/10.1155/2020/1393160

    Article  Google Scholar 

  13. Peng B, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206. https://doi.org/10.1002/cjce.20554

    Article  CAS  Google Scholar 

  14. Cheng G, Zhou M, Wei YJ, Cheng F, Zhu PX (2019) Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber and microfibrillated cellulose in starch composites. Polym Compos 40:E365–E372. https://doi.org/10.1002/pc.24685

    Article  CAS  Google Scholar 

  15. Sojoudiasli H, Heuzey MC, Carreau PJ (2018) Mechanical and morphological properties of cellulose nanocrystal-polypropylene composites. Polym Compos 39:3605–3617. https://doi.org/10.1002/pc.24383

    Article  CAS  Google Scholar 

  16. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54. https://doi.org/10.2147/NSA.S64386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  18. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12:41–75. https://doi.org/10.1163/1568554053542188

    Article  CAS  Google Scholar 

  19. Zhang XZ, Ma PM, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly (butylene adipate-co-terephthalate) composites. Polym Bull 73:2073–2085. https://doi.org/10.1007/s00289-015-1594-y

    Article  CAS  Google Scholar 

  20. Aklog YF, Nagae T, Izawa H et al (2016) Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment. Carbohydr Polym 153:55–59. https://doi.org/10.1016/j.carbpol.2016.07.060

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692. https://doi.org/10.1016/j.biortech.2010.02.045

    Article  CAS  PubMed  Google Scholar 

  22. SCAN-C15:62 (1962) Scandinavian pulp, paper and board—viscosity of cellulose in cupric-ethylenediamine solution (CED)

  23. Paleari AG, Marra J, Pero AC, Rodriguez LS, Ruvolo-Filho A, Compagnoni MA (2011) Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin. J Appl Oral Sci 19:195–199. https://doi.org/10.1590/s1678-77572011000300003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barbosa DB, de Souza RF, Pero AC, Marra J, Compagnoni MA (2007) Flexural strength of acrylic resins polymerized by different cycles. J Appl Oral Sci 15:424–428. https://doi.org/10.1590/s1678-77572007000500010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. International Organization for Standardization (1998) ISO 1567: denture base polymers, 2nd ed. Geneva

  26. Flauzino Neto WP, Putaux J, Mariano M et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027. https://doi.org/10.1039/C6RA16295A

    Article  CAS  Google Scholar 

  27. Tonoli GHD, Teixeira EM, Corrêa AC et al (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88. https://doi.org/10.1016/j.carbpol.2012.02.052

    Article  CAS  PubMed  Google Scholar 

  28. da Silva ISV, Neto WPF, Silverio HA, Pasquini D, Andrade MZ, Otaguro H (2017) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Adv Technol 28:1005–1012. https://doi.org/10.1002/pat.3734

    Article  CAS  Google Scholar 

  29. Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275. https://doi.org/10.1179/sic.2003.48.4.269

    Article  CAS  Google Scholar 

  30. Li W, Wang R, Liu SX (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources 6:4271–4281. https://doi.org/10.15376/biores.6.4.4271-4281

    Article  CAS  Google Scholar 

  31. Qiao H, Zhou Y, Yu F et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303. https://doi.org/10.1016/j.chemosphere.2015.07.078

    Article  CAS  PubMed  Google Scholar 

  32. García-Astrain C, González K, Gurrea T et al (2016) Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels. Carbohydr Polym 149:94–101. https://doi.org/10.1016/j.carbpol.2016.04.091

    Article  CAS  PubMed  Google Scholar 

  33. French AD, Cintron MS (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  34. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  35. Azeredo HM, Mattoso LH, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35. https://doi.org/10.1111/j.1750-3841.2009.01186.x

    Article  CAS  PubMed  Google Scholar 

  36. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82. https://doi.org/10.1016/S0927-7757(98)00404-X

    Article  CAS  Google Scholar 

  37. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. https://doi.org/10.1021/bm034519

    Article  CAS  Google Scholar 

  38. Sun Y, Song SY, Lee KS, Park JH, Ryu JJ, Lee JY (2018) Effects of relining materials on the flexural strength of relined thermoplastic denture base resins. J Adv Prosthodont 10(5):361–366. https://doi.org/10.4047/jap.2018.10.5.361

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vergani CE, Seo RS, Pavarina AC, dos Santos Nunes Reis JM, (2005) Flexural strength of autopolymerizing denture reline resins with microwave postpolymerization treatment. J Prosthet Dent 93(6):577–583. https://doi.org/10.1016/j.prosdent.2005.03.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by FAPESP (São Paulo Research Foundation), Grants No. 2017/26512-9.

Funding

This study was supported by FAPESP (São Paulo Research Foundation), Grant No. 2017/26512–9.

Author information

Authors and Affiliations

Authors

Contributions

Silvério HA helped in methodology and validation; Leite ARP contributed to formal analysis, writing—draft preparation; Silva MDD involved in writing—reviewing and editing; Assunção RMN helped in investigation and data curation; Pero AC supervised the study and acquired the funding; Pasquini D helped in term, conceptualization, project administration and resources.

Corresponding author

Correspondence to Ana Carolina Pero.

Ethics declarations

Conflicts of interest

All authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvério, H.A., Leite, A.R.P., da Silva, M.D.D. et al. Poly (ethyl methacrylate) composites reinforced with modified and unmodified cellulose nanocrystals and its application as a denture resin. Polym. Bull. 79, 2539–2557 (2022). https://doi.org/10.1007/s00289-021-03621-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03621-0

Keywords

Navigation