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Abstract 1 

We revisit Cloud Vertical Structure (CVS) classes we have previously employed to classify the 2 

planet’s cloudiness. The CVS classification reflects simple combinations of simultaneous cloud 3 

occurrence in the three standard layers traditionally used to separate low, middle, and high 4 

clouds and was applied to a dataset derived from active lidar and cloud radar observations. This 5 

classification is now introduced in an Atmospheric Global Climate Model (AGCM), specifically 6 

NASA’s GEOS-5, in order to evaluate the realism of its cloudiness and of the radiative effects 7 

associated with the various CVS classes. Determination of CVS and associated radiation in the 8 

model is possible thanks to the implementation of a subcolumn cloud generator which is paired 9 

with the model’s radiative transfer algorithm. We assess GEOS-5 cloudiness in terms of the 10 

statistics and geographical distributions of the CVS classes, as well as features of their 11 

associated Cloud Radiative Effect (CRE). We decompose the model’s CVS-specific CRE errors 12 

into component errors stemming from biases in the frequency of occurrence of the CVSs, and 13 

biases in their internal radiative characteristics. Our framework sheds additional light into the 14 

verisimilitude of cloudiness in large scale models and can be used to complement cloud 15 

evaluations that take advantage of satellite simulator implementations. 16 

 17 
18 
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1. Introduction 1 

The large impact of clouds on the Earth’s radiation budget and the growing wealth of 2 

satellite-based cloud observations are strong motivators for their systematic assessment in 3 

climate models. Such evaluation exercises focus on either cloud properties, or metrics of cloud 4 

radiative impact, or ideally on both (Pincus et al., 2008; Nam et al., 2012; Klein et al., 2013; 5 

Wang and Su, 2013; Dolinar et al., 2015). 6 

Assessments of cloud properties with satellite observations is not always straightforward 7 

for a variety of reasons such as inability to define a satellite-observed property in the model, or 8 

limitations in the satellite observations. For example, the vertically integrated cloud optical 9 

depth of the cloudy portion of a model grid cell is an ill-defined quantity that cannot be 10 

obtained trivially from the model’s optical depth profile since it is intimately associated with a 11 

cloud fraction profile, making thus layer optical depths relevant for only the cloudy portions of 12 

the grid cell which change at different model levels and can conceptually be vertically aligned in 13 

various ways. In contrast, vertically-integrated cloud optical depth is quite robustly defined in 14 

observations since it is measured with passive imagers at a much higher resolution for which 15 

assuming overcast conditions is a far better approximation. Issues such as these have led to the 16 

development of “satellite simulators” that transform Global Climate Model (GCM) cloud fields 17 

to forms that are closer analogues to their counterparts observed by satellites (e.g., the COSP 18 

simulator – Bodas-Salcedo et al., 2011). 19 

The quality of simulated clouds in GCMs can also be measured in terms of the realism of 20 

their radiative impact using quantities such as the Cloud Radiative Effect (CRE), i.e., the 21 

difference between all-sky and clear-sky fluxes at the spatial scales of a model grid cell (Wang 22 

and Su, 2013). This type of comparison can be performed at a variety of spatiotemporal scales 23 

and is often quite illuminating, but interpretation of findings can suffer from inconsistencies in 24 

how the estimates are obtained for satellites and models.  25 

This paper is yet another attempt to evaluate clouds in a an atmospheric (AGCM), 26 

specifically a version of the Goddard Earth Observing System version 5 (GEOS-5) model 27 

(Rienecker et al., 2008; Molod et al., 2012), a multi-purpose global model that is used for a 28 

variety of applications. Both approaches of cloud assessment are used, namely comparison of 29 
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the cloud fields themselves, but also comparison of cloud radiative impacts. Our cloud property 1 

evaluation focuses on a single aspect of cloudiness: Cloud Vertical Structure (CVS). The 2 

comparison is possible because of recent progress in two areas: active cloud remote sensing 3 

which makes resolving cloud vertical profiles possible; and the development of schemes 4 

(subcolumn generators) that create subgrid cloud vertical structures in GCMs. Being able to 5 

categorize clouds in terms of a few CVS categories facilitates the comparison between 6 

observations and models and enables a more rigorous CRE comparison that evaluates the 7 

model’s skill with regard to how it simulates the radiative impact of individual CVS classes. 8 

 9 
2. Data and methodology 10 

The observational reference dataset of CVS class occurrence and associated radiative fluxes is 11 

essentially the same as Oreopoulos et al. (2017), hereafter O17, and spans four years (2007-12 

2010.) A schematic illustration of the original CVS classes of O17 is reproduced here as Fig. 1. 13 

The details of how cloud layer boundaries available in the 2B-CLDCLASS-LIDAR R04 dataset 14 

(Sassen and Wang, 2012, see also http://tinyurl.com/2b-cldclass-lidar), a joint product coming 15 

from CloudSat and CALIPSO (hereafter, “CC”) active cloud radar and lidar observations, were 16 

interpreted as cloud layer profiles belonging to one of these classes are described exhaustively 17 

in the appendix of O17. The definition of the CVS classes hinges on defining broad categories of 18 

high H middle M and low L clouds which are confined to three standard atmospheric layers, one 19 

above 440 hPa, another between 680 and 440 hPa and one below 680 hPa, respectively. The 20 

vertical level boundaries defining these standard layers come from the International Satellite 21 

Cloud Climatology Project (ISCCP), (Rossow and Schiffer, 1991). The reference radiative fluxes 22 

come from the 2B-FLXHR-LIDAR R04 CC product (L’Ecuyer et al., 2008; Henderson et al., 2013; 23 

Matus and L’Ecuyer, 2017) and are obtained from a radiative transfer algorithm operating on 24 

observed and re-analysis output which has at its core retrieved CC cloud properties. 25 

For the purposes of this study the CVS classes have been reduced to seven by merging the 26 

CVS classes for which clouds occur simultaneously in the same two or three standard adjacent 27 

layers (all multi-layer CVS classes other than “HL”). In other words, we do not distinguish any 28 

longer between CVS classes with clouds occurring in the same adjacent standard layers, even 29 

though these were previously discerned based on whether or not a clear layer of substantial 30 
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vertical extent was present to separate the cloud layers. This means in practice that we do no 1 

longer distinguish (cf. Fig. 1) between CVS = “H×M×L” and “HML” (now simply “HML”), CVS = 2 

“H×M” and “HM” (now simply “HM”), CVS = “M×L” and “ML” (now simply “ML”). The reason for 3 

reducing the CVS classes to seven from the original ten is the complexity of the model 4 

subcolumns which can consist of numerous distinct cloud layers and which therefore renders 5 

the O17 CVS classification scheme inapplicable. The original scheme was designed for observed 6 

cloud profiles from CC that rarely (less than 1% of the time) consisted of more than four distinct 7 

cloud layers and were either ignored or processed only in the simplest of cases (such as 8 

multiple individual cloud layers residing within a single standard layer – see appendix of O17). 9 

A prerequisite for the evaluation of GEOS-5 clouds in terms of their CVS class frequency 10 

and the CRE statistics associated with these CVS classes is creating comparable datasets. 11 

Assigning CVS classes to grid cell GCM cloud fields is not possible without manipulation of the 12 

GCM’s cloud profiles. To this end, we use the cloud subcolumn generator that is paired with the 13 

RRTMG-LW and RRTMG-SW radiative transfer codes (Mlawer et al., 1997; Iacono et al., 2008) in 14 

the model’s Monte Carlo Independent Column Approximation (McICA; Pincus et al., 2003) 15 

implementation. This subcolumn generator follows Räisänen et al. (2004) and can produce 16 

subcolumns that are consistent with specific assumptions about the overlap of both cloud 17 

fraction and the horizontal distributions of cloud condensate. While the latter type of overlap is 18 

irrelevant to CVS class frequency statistics, it does matter for the radiative transfer calculations 19 

producing the radiative fluxes used to estimate CREs. The 140 subcolumns created by the 20 

model’s generator (which match the number of “g points” in RRTMG-LW’s correlated-k scheme) 21 

are essentially assumed equivalent to the cloud profiles viewed by the active instruments 22 

(CALIPSO’s lidar and CloudSat’s radar) and whose vertical location information is recorded in 23 

the 2B-CLDLASS-LIDAR product. Herein, we will show results from two types of cloud fraction 24 

overlap that have been implemented in the cloud subcolumn generator, generalized (GN) 25 

overlap, also known as exponential overlap (Hogan and Illingworth, 2000; Oreopoulos and 26 

Norris, 2011) and maximum-random overlap (MR overlap, Geleyn and Hollingsworth, 1979). 27 

The model, GEOS-5 tag “Jason-2”was run with fixed sea surface temperatures (SSTs) for 28 

the same period as the reference dataset, 2007-2010. The model integration was driven by 29 
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radiative fluxes and heating rates produced by the run for which generalized overlap was 1 

assumed. RRTMG-LW and RRTMG-SW were called for an additional set of flux calculations using 2 

this time the MR overlap assumption to produce cloudy subcolumns, but only in diagnostic 3 

mode, i.e., the generated fluxes served only diagnostic purposes and were not returned to the 4 

model to influence the evolution of its energetics and dynamics. This way, with one interactive 5 

and one diagnostic call to the RRTMG codes, we obtained two sets of CVS diagnostics and 6 

corresponding CREs. In both cases, the subcolumns come from the same mean cloud fraction 7 

and condensate profile. The layer condensates are assumed to possess horizontal subgrid 8 

condensate heterogeneity as prescribed in Oreopoulos et al. (2012). This subgrid condensate 9 

variability affects the model’s CRE distribution, but not the CVS fields and statistics. 10 

In the subcolumn generator, the decorrelation length (e-folding distance) for the 11 

generalized overlap scheme was set to vary zonally as described in Oreopoulos et al (2012). The 12 

physical meaning of the decorrelation length is that cloud layers separated by a distance equal 13 

to the decorrelation length overlap as a mixture of maximum and random overlap in e (≈0.368) 14 

and 1-e (≈0.632) proportions (weights), respectively. At distances greater (smaller) than the 15 

decorrelation length the contribution of random (maximum) overlap contribution increases 16 

(decreases) compared to the above values. In the limit of zero separation cloud overlap is 17 

purely maximum, while in the limit of infinite distance overlap is purely random. The zonal 18 

prescription of decorrelation length by Oreopoulos et al. (2012) is based on CloudSat 19 

observations and is meant to capture a more coherent vertical cloud alignment (i.e., more 20 

maximum overlap and greater decorrelation length) at low latitudes compared to high 21 

latitudes, also seen by Barker (2008). This formulation of overlap is an alternative to maximum-22 

random overlap which was the standard popular choice at earlier years. The Geleyn and 23 

Hollingsworth (1979) implementation of MR overlap in our Räisänen et al. (2004)-based 24 

generator allows for random overlap even within a “block” of contiguous clouds: immediately 25 

adjacent clouds are maximally overlapped, but non-adjacent clouds within the contiguous block 26 

can have portions that are randomly overlapped if there is a local minimum in cloud fraction 27 

between them; random overlap applies for those portions that do not fully overlap with the in-28 

between layers. This type of MR overlap should be contrasted with other implementations 29 

https://doi.org/10.5194/gmd-2019-216
Preprint. Discussion started: 4 September 2019
c© Author(s) 2019. CC BY 4.0 License.



 7 

(e.g., Chou et al. 1998) where maximum overlap always takes place within the block while the 1 

various distinct blocks of the atmospheric column (always separated by clear layers) are 2 

themselves randomly overlapped. 3 

 4 

3. GEOS-5 cloud evaluation with CVS 5 

a. Climatological CVS occurrence 6 

Figure 2 compares the observed and simulated (from GN overlap) multi-annual maps of RFO for 7 

all seven CVS classes of our study. The observed fields are sampled at rather coarse 4°x4° scales 8 

to compensate for the substantial sparseness of the active observations (gridding at higher 9 

resolutions would make for noisy maps). Above each panel we provide the area-weighted RFO 10 

global mean of the CVS (equivalent to its global cloud fraction). These fields include nighttime 11 

observations and simulations since the former are possible for active sensors and the latter are 12 

passed as input for the model’s nighttime RRTMG-LW calculations. 13 

Before examining consistency (or lack thereof) for cloud fields, we first turn our attention 14 

to clear skies. We note that the observations suggest a cloudier world with clear skies occurring 15 

only ~25% of the time (or, alternatively, covering 25% of the global area between 82°S and 16 

82°N). The GEOS-5 AGCM on the other hand produces clear skies more frequently, ~38% of the 17 

time over the entire globe (90°S to 90°N) for GN and ~42% for MR. Despite the model’s positive 18 

clear-sky fraction bias (negative cloud fraction bias), many patterns of clear-sky occurrence are 19 

realistic with peaks occurring in desert areas, western North America and the southern parts of 20 

Africa and S. America. Over ocean, the model seems to be producing clear skies in the maritime 21 

continent and the far southern oceans more frequently than observations, but these 22 

overestimates are still much smaller compared to those in wide subtropical swaths of the 23 

Atlantic and Pacific oceans. The model also exhibits pronounced cloudiness underestimates in 24 

the descending branch of the central Pacific’s Walker circulation. The only notable model 25 

underestimate of clear-sky frequency occurs over western Antarctica. The MR overlap 26 

assumption makes the clear sky overestimates worse, with the biggest impact seen in the 27 

central and western tropical Pacific (clear subcolumn panel of Fig. 3). Note that the observed 28 

global clear sky fraction is lower in 2B-CLDCLASS-LIDAR compared to passive satellite 29 
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observations such as those from MODIS (King et al., 2003) because of CALIOP’s enhanced ability 1 

to detect clouds that are optically very thin. Model cloud coverage on the other hand has been 2 

traditionally tuned to resemble that seen in cloud climatologies obtained by passive satellite 3 

observations at solar and thermal infrared wavelengths. 4 

Moving on to cloudy skies, a quick survey of the remaining panels of Fig. 2 reveals that the 5 

model exhibits considerable skill in simulating cloudiness when viewed under the prism of CVS 6 

classes. Weaknesses are however revealed upon closer examination. In terms of global values, 7 

the only CVS class where the model produces a substantial RFO overestimate is “HM”, for both 8 

overlap assumptions. For CVS = ”HML”, global RFOs agree, especially for the GN overlap 9 

assumption. The global RFOs of all other CVS classes are underestimated to varying degrees 10 

with the underestimates being slightly worse for the MR overlap assumption, except for CVS = 11 

”L” for which MR RFO slightly exceeds GN RFO. The total RFO of the four CVS classes containing 12 

H clouds is ~40% in observations, and ~36% (GN) or ~32% (MR) in the model. The remaining 13 

CVS classes consisting of only L and M clouds add up to a global RFO of ~35% in observations 14 

and ~ 26% in the model (both GN and MR). Therefore, most of the 13% discrepancy between 15 

GEOS-5/GN in global cloud fraction comes from the three CVS classes containing only L and M 16 

clouds, while the larger discrepancy of ~17% for GEOS-5/MR is more evenly split between these 17 

three CVS classes and the remaining four containing H clouds. 18 

Closer comparison of geographical features is also informative. The bottom part of Fig. 2 19 

shows only the GN overlap results and can be directly compared with the top part showing the 20 

observed maps. The performance of the MR overlap implementation can be gleaned in terms of 21 

its deviation from GN in the Fig. 3 difference maps. 22 

Simulating low clouds has been identified as a challenge for large scale models, but this 23 

version of GEOS-5 seems to be simulating the isolated low clouds (CVS = “L”) quite well with a 24 

global underestimate of ~5% for GN overlap and ~4%, for MR (absolute values), and with 25 

characteristic cloud patterns associated with marine stratocumulus being present albeit with 26 

less extensive spatial coverage. While GEOS-5 does not produce isolated M clouds (CVS class 27 

“M”) as often as in the observations, the impact is expected to be small as this CVS class is the 28 

least frequently observed with presence exclusively over land and specifically deserts, ice/snow 29 
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covered surfaces, and regions pronounced orography. Overall however, there is not such a 1 

great paucity of M clouds in the model when taking into account the other CVS classes 2 

containing this type of cloud. Setting aside deep and multi-layer clouds (the “HML” CVS class), 3 

M clouds appear only about 11% (for GN – the figure rises to 22% for MR) more frequently (in 4 

relative terms) in observations than the model; the combined RFO of “M”, “ML” and “HM” is 5 

14.5% in the observations and 13% (11.8%) in the model for the GN (MR) implementation. 6 

Finally, H over L clouds (CVS class “HL”) are one of the biggest contributors in the overall 7 

cloudiness discrepancy between the real and simulated worlds as they appear twice as often in 8 

the observations than in the GN version of the model (even more for MR). The model seems to 9 

miss a lot of the tropical presence of this CVS class. 10 

A closer look at the influence of the overlap assumption on CVS RFOs can be gauged from 11 

the Fig. 3 maps. We have previously seen that in general the MR overlap assumption generally 12 

produces less cloudiness than GN. This happens systematically (i.e, virtually all locations) for 13 

five out of seven CVS classes. The interesting exception is CVS = ”L” (CVS = ”M” is absent in 14 

GEOS-5 for all practical purposes). The Fig. 3 difference map for CVS = ”L” reveals that the GN 15 

underestimates come mostly from the extratropics; tropical and subtropical pockets can be 16 

found where GN cloud amounts exceeds those from MR, as in the other CVS classes. The 17 

contrast between CVS = ”L” and the other CVS classes brings home the point that the specific 18 

flavors of these overlap assumptions as implemented in GEOS-5 can produce a variety of 19 

outcomes that depend on the total geometrical extent of contiguous or non-contiguous cloud 20 

vertical cloud configurations and the detailed shape of the cloud fraction profile. 21 

 22 

b. Global CRE comparison by CVS class 23 

Figure 4 compares the global mean CREs between model and observations, the latter coming 24 

from the aforementioned 2B-FLXHR-LIDAR CC product. It shows the mean values only when the 25 

CVS occurs, i.e., CRE is weighted by area, but not by global RFO. We call this type of CRE the 26 

“cloudy-column” or “inherent” CRE since it is calculated by taking the mean of the CRE values of 27 

cloudy columns belonging to the CVS class. We show CRE from three perspectives: the Top-of-28 

the-Atmosphere, TOA (top), the surface, SFC (bottom), and the atmospheric column, ATM 29 
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(middle), the latter derived as the difference between the TOA and SFC CREs. We also 1 

distinguish between shortwave (SW) and longwave (LW) components, and also display their 2 

sum which we call “total” CRE (aka “net” CRE). Note that the y-axis range is the same for TOA 3 

and SFC CRE, but it is substantially more compressed for ATM CRE. With CRE being defined as 4 

the difference between all-sky and clear-sky net (=down-up) fluxes, negative values indicate a 5 

radiative cooling effect, while positive values indicate a radiative warming effect. For TOA and 6 

SFC, all SW CREs are negative. Note also the magnitudes at TOA and SFC being rather similar for 7 

SW with the slightly larger SFC value resulting from the small positive ATM SW CRE which 8 

indicates that clouds slightly enhance atmospheric column absorption. While LW CREs at both 9 

TOA and SFC are positive and therefore indicative of warming, the ATM LW CRE can be either 10 

positive or negative. Note that all positive global means involve H clouds. Again, we show 11 

model results for the two overlap assumptions, GN and MR although their CREs are quite close 12 

in general. The observed SW CREs depend strongly on the incoming solar flux at the 13 

approximate 1:30 pm local overpass time are therefore scaled to diurnal fluxes by normalizing 14 

with the ratio of the instantaneous to diurnally averaged incoming solar flux at TOA (O17); the 15 

LW CREs are simple averages of the daytime and nighttime overpass values. On the other hand, 16 

both SW and LW CREs from the model are daily averages of three hourly mean outputs. 17 

For TOA SW CRE, the best agreement between model and observations occurs for CVS = 18 

“L”, and CVS = “HM”. For the remaining CVS classes the model either overestimates (CVS = ”H”, 19 

“M”, “HL”) or underestimates (CVS = ”ML”, “HML”) cloudy column TOA SW CRE. The 20 

overestimate for CVS class “H” is very large in relative terms given the small absolute 21 

magnitude of the observed CRE. It appears then that H clouds in the model are optically thicker 22 

than in observations. Discrepancies are quite smaller for TOA LW CRE, reflecting the lesser 23 

dependence of this quantity on cloud properties other than cloud top location (which is 24 

constrained because of the CVS class decomposition) once clouds reach a certain value of 25 

optical thickness (~ 5). The biggest bias (underestimate) appears for CVS = “HML” CVS, but since 26 

it is still smaller than the SW CRE bias it results in an underestimate of net planetary cooling as 27 

expressed by total TOA CRE (purple bars). Given the better agreement between LW CREs, total 28 

TOA CRE biases follow the sign of the SW CRE biases. These findings are very insensitive to the 29 
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type of chosen overlap, although the differences in magnitudes between the two simulated 1 

values are large enough to be distinguishable in most cases. 2 

When moving to examination of surface (SFC) CREs (bottom panel of Fig. 4) our 3 

conclusions about the SW CRE component are the same as before since atmospheric (ATM) SW 4 

CREs are small positive values (middle panel). LW CRE values are again simulated quite well 5 

since most of the variability is driven by the location of the cloud bottom which is constrained 6 

for each CVS class. The largest biases occur for CVS = ”L” and “HL” (overestimates by the 7 

model), and since the TOA CREs have small biases for those cases, errors (excessive cooling) 8 

materialize in the ATM LW CRE. Still, the largest ATM LW CRE error occurs for CVS=”HM” 9 

(excessive warming by the model) because the TOA and SFC CRE errors are in the opposite 10 

direction. Given the small magnitude of ATM SW CRE, the total ATM CRE errors track those of 11 

the LW component. 12 

Figure 5 compares observed and modeled CRE values that are now weighted by the global 13 

mean RFO of the CVS classes in addition to areal weighting. We can also call this type of CRE 14 

“grid-mean” CRE since in the calculation of the mean all columns that do not belong to the CVS 15 

class under consideration contribute zero errors. Summing then these CVS-specific values yields 16 

the true global CRE of observed and modeled CRE fields. Since the grid-mean CRE values and 17 

the range of the y-axis is much smaller than in Fig. 4, it makes sense to compare the two figures 18 

only with respect to relative biases, essentially focusing on the position of the symbols 19 

(simulated values) relative to the length of the bar (observed values). While this will be shown 20 

more explicitly in upcoming Fig. 6, comparison of Figs. 4 and 5 basically indicates whether RFO 21 

errors suppress (i.e., compensate for) or amplify cloud property only errors. Take CVS = ”HL” for 22 

example: RFO errors (underestimates) help suppress the TOA and SFC SW (and total) 23 

overestimates. In general, we do not see much of the opposite effect, i.e., an amplification of 24 

relative error CRE when moving from cloudy-column to grid-mean CRE. Of course, a very low 25 

RFO also makes whatever cloudy-column CRE seemed previously substantial to disappear, with 26 

CVS =” M” being a characteristic case in point. The discussion on grid-mean CRE error 27 

interpretation continues in the next subsection where a more formal error decomposition 28 

framework is employed. 29 
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 1 

c. CRE error decomposition 2 

Figure 6 shows the decomposition of GEOS-5 grid-mean CRE global errors of Fig. 5 to cloudy 3 

column CRE and RFO error contributions for the GN case only (conclusions remain the same for 4 

MR). The decomposition can be expressed as follows (Tan et al. 2015): 5 

Δ𝐶𝑅𝐸 = 𝑓̅ × Δ𝑟 + 𝑟̅ × Δ𝑓 + Δ𝑟 × Δ𝑓    (1) 6 

This representation of CRE error arises when the model global grid-mean CRE of a CVS 7 

class (Fig. 5) is expressed as the product of a deviation Δ𝑟 from the observed mean CRE 𝑟̅,	(Fig. 8 

3), and the model global RFO is expressed as a deviation Δ𝑓 from the observed mean RFO, 𝑓:̅ 9 

𝐶𝑅𝐸-./012 = (𝑟̅ + Δ𝑟) × (𝑓̅ + Δ𝑓)     (2) 10 

Basically, the model’s grid-mean CRE error for a CVS class arises from a combination of 11 

cloudy-column CRE bias Δ𝑟 under the observed RFO 𝑓,̅ and the simulated RFO bias Δ𝑓 under 12 

observed cloudy-column CRE 𝑟̅, plus a co-variation term of RFO and CRE errors under observed 13 

𝑓 ̅and 𝑟̅ (Tan et al. 2015). Such a decomposition of CRE error allows us to infer, for example, 14 

whether the model’s poor simulation of grid-mean CRE is mostly due to errors in simulating the 15 

occurrence frequency of the CVS class or errors in the optical and physical properties of the CVS 16 

class which drive the cloudy-column CRE. Similarly, it potentially reveals cases where good 17 

simulations of global grid-mean CRE in Fig. 5 benefit from compensating errors in simulated 18 

RFO (Fig. 2) and cloudy-column CRE (Fig. 4). 19 

Separate panels are used in Fig. 6 for SW (first column), LW (second column) and total 20 

(third column) CRE. The breakdown by TOA, SFC and ATM is also preserved, yielding thus a total 21 

of nine panels. In the SW, TOA and SFC results look again very similar, while the ATM CRE errors 22 

are too small to merit discussion. For most CVS classes (five out of seven) grid-mean SW CRE 23 

errors (gray bars) come from cloudy-column CRE errors (red bars), namely errors in CVS optical 24 

properties. The excessive planetary cooling of the cloudy columns (negative red bars, four CVS 25 

classes) is always dampened by compensating errors, sometimes virtually eliminating the error 26 

(as in CVS = “L”, “HL”) or reducing it slightly (CVS = “H”), or overcorrecting (CVS = “M”). SW TOA 27 

cloudy-column CRE (red bars) in the opposite direction (cooling underestimates) become bigger 28 
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grid-mean errors by RFO errors for CVS= “ML” and “HML”, while the grid-mean errors for CVS = 1 

“HM” comes almost exclusively from RFO errors (blue bars). Finally, three CVS classes have 2 

sizable co-variation errors (green bars) in the same direction as RFO errors. The above error 3 

interpretation applies virtually intact for surface (SFC) SW errors. 4 

Contrary to the SW, the LW CRE errors for all three vantage points (TOA, SFC, ATM) 5 

deserve their own discussion as they have different characteristics. At TOA and SFC the errors 6 

are substantially smaller than their SW counterparts. Three of the four CVS classes with H 7 

clouds (the exception being CVS = “H”) exhibit ~2 Wm-2 (absolute) errors, coming from RFO 8 

contributions in two out of the three classes. These three classes have smaller grid-mean errors 9 

at the SFC, in one case (CVS =”HL”) because of compensating errors. The largest component 10 

errors occur for CVS = ”L” which has the largest absolute magnitude of grid-mean SFC CRE, but 11 

with component errors in the opposite direction, compensation that reduces the grid-mean 12 

error takes place. Because the TOA errors for this CVS class are small, the SFC errors carry to the 13 

ATM errors. The other CVS class with large ATM error is “HML” where TOA and SFC errors of 14 

the opposite sign conspire to magnify the ATM error. 15 

Errors in total CRE are driven mainly by SW errors at TOA and SFC, and LW errors for ATM. 16 

Errors of the opposite sign reduce the cloud-column cooling error at the SFC for CVS = “L” and 17 

“HL” and the grid-mean warming error for CVS=”ML”. But because the SFC LW CRE errors are in 18 

general small, the total CRE SFC errors largely retain the characteristics of the SW component. 19 

In the atmospheric column SW and LW cloud-column (and grid-mean) errors are additive for 20 

CVS = ”HML” and opposing for CVS = “L”, the only two classes for which ATM SW CRE registers 21 

errors of notable magnitude (cf. middle panels of Fig. 4 and 5). 22 

In summary, this decomposition analysis showed the multiple ways relatively good 23 

agreement with observed CRE values for the various vantage points can be achieved by GEOS-5 24 

(or any other model evaluated this way). Cloudy-column and RFO errors can compensate, TOA 25 

and SFC errors can compensate (for ATM LW CRE, e.g., CVS = “M”, ”ML”), SW and LW errors can 26 

compensate for total CREs, and finally the errors among various CVS classes can compensate 27 

towards decreasing the global CRE error. 28 

 29 
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d. Seasonal CRE comparison 1 

Figures 7-9 compares the multi-year mean annual cycle of TOA, SFC, and ATM total (=SW+LW) 2 

grid-mean CRE zonal averages between observations and the model (employing the GN overlap 3 

assumption) for the four CVS classes with the greatest grid-mean SW or LW CREs according to 4 

Fig. 5. 5 

Inspection of the TOA and SFC CRE plots shows that the model has some skill in simulating 6 

the seasonal competition between SW and LW CRE, but this should not come as a surprise as it 7 

is driven mainly by seasonal changes in insolation. Basically, with everything else staying the 8 

same, the SW CRE contribution to total CRE scales with the amount of incoming solar energy. 9 

Positive values of total TOA and SFC CRE occur when the solar insolation is weak during the 10 

winter allowing thus the positive LW CRE to exceed the negative SW CRE. At TOA, this takes 11 

place only for the “HML” CVS class since this is the CVS class with competing SW and LW CREs 12 

of relatively large magnitude. Note that the model summer planetary cooling is stronger than in 13 

the observations. At the SFC, besides CVS = ”HML” the seasonal switch from cooling to warming 14 

also takes place also for CVS = ”L” because the LW CRE is of comparable magnitude to its SW 15 

counterpart. The model’s CVS = “H” is virtually neutral radiatively at TOA throughout the year, 16 

in contrast to the observations, where it provides planetary radiative heating in the tropics and 17 

subtropics. It seems then that in the model CVS= “H” consists of optically thicker clouds that 18 

reflect more solar radiation to space than in the real world. H clouds in GEOS-5 appear to be 19 

also optically thicker when overlapping with L clouds (CVS = “HL”), in this case producing 20 

planetary cooling in the tropics throughout the year and in the extratropics during the summer 21 

months of high insolation, in contrast to the observations where their cooling effect is very 22 

weak and occurs only in the austral extratropics during summertime. Evidence for optically 23 

thicker H clouds in both CVS =”H” and “HL” is also seen at SFC total CREs which are more 24 

negative in the model than in the observations. Overall (all CVS classes combined, rightmost 25 

panel of Figs. 7 and 8), the model produces a rather realistic pattern of the seasonal variations 26 

in zonal mean total CREs. 27 

Total ATM CREs are driven as we have seen earlier by the LW component, and their 28 

seasonal cycles are fairly well represented by the model for three of the four most radiatively 29 
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important CVS classes (Fig. 9). The nature of CVS = ”HML” seems however to be different in 1 

GEOS-5 compared to observations. At high latitudes the atmospheric column is cooled by this 2 

type of cloudiness, especially during the summer months, as the SFC total CRE (Fig. 8) exceeds 3 

the TOA CRE (Fig. 7). Since the SW contribution is relatively small, it then seems that L clouds 4 

within CVS = “HML” have lower bases or are optically thicker during the summer months in the 5 

model compared to observations, making their downward emission towards the surface and 6 

therefore also the contrast between TOA and SFC emission stronger in the model than the 7 

observations. Fig. 9i shows also that the near zero total ATM CRE for CVS =”HML” in GEOS-5 8 

(Fig. 5) is a result of regional positive and negative total ATM CRE compensations. Overall, the 9 

model captures the basic zonal pattern of atmospheric heating and warming (rightmost panel 10 

of Fig. 9) with heating prevailing in the tropics and cooling in the extratropics. The tropical 11 

heating is however weaker than in the observations while the extratropical atmospheric cooling 12 

is stronger. 13 

 14 

4. Conclusions 15 

We have introduced a method of cloud evaluation for Large Scale Atmospheric Models that 16 

focuses on the vertical structure of cloudiness. Cloud Vertical Structure (CVS) is resolved in a 17 

rather simplified way based on the various combinations of cloud presence in three standard 18 

layers that have been traditionally used to distinguish between high, middle, and low clouds. A 19 

reference dataset for such CVS classification now exists because of CloudSat and CALIPSO active 20 

sensor observations (Oreopoulos et al. 2017). For the purposes of model evaluation, the initial 21 

dataset of 10 CVS classes was simplified to consist of 7 classes by natural merging of some of 22 

the original classes that had clouds in adjacent standard layers. Beyond comparison of the 23 

frequency of occurrence of the CVS classes we also compared their radiative impact in terms of 24 

the Cloud Radiative Effect (CRE). While the CVS classes by design constrain cloud vertical 25 

location (albeit not in the strictest of ways), they constrain extinction to a lesser extent, mostly 26 

qualitatively (e.g., multi-layer cloud configurations are expected to result in a greater total 27 

column extinction). This is taken into account when examining the performance of the model in 28 

terms of SW and LW CRE. We developed a framework wherein we can compare CRE for only 29 
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when a CVS class occurs, or perform a comparison that also accounts for how frequently the 1 

CVS class occurs. We can then naturally examine to what extent errors in the latter type of CRE 2 

are because of errors in the inherent CRE of the class and/or biases in frequency of occurrence. 3 

The GEOS-5 model under evaluation produces about 50% more clear skies than 4 

observations in relative terms. It produces isolated high clouds (cloud top and base above the 5 

440 hPa level) that are slightly less frequent than in observations, but are optically thicker 6 

yielding excessive planetary and surface cooling. Low clouds (cloud tops and bases within the 7 

lowest layer of the troposphere up to 680hPa) are usually a challenge for global models, but 8 

GEOS-5 is doing reasonably well and compensates a lower frequency of occurrence (by ~20% in 9 

relative terms) with overestimates in extinction, producing in the end an excellent agreement 10 

with observations for SW and LW CREs at either the TOA, SFC or the atmospheric column 11 

vantage points. Overall LW CREs are better simulated since they are mainly driven by vertical 12 

cloud location which is substantially constrained when clouds are broken by CVS class. But 13 

either component of CRE can be off in terms of contribution to the global CRE if the frequency 14 

of occurrence is deficient. The other side of the coin is, of course, that incorrect simulation of 15 

frequency of occurrence can compensate for biased cloud optical and physical properties that 16 

determine the inherent CRE of the CVS class. Needless to say, CRE biases among different CVS 17 

classes can also cancel out to various degrees when global or regional CREs encompassing all 18 

clouds represented by the CVS classes are calculated. In such a holistic view, the model appears 19 

able, for example, to reproduce the aggregate planetary feature of atmospheric radiative 20 

warming in the tropics and cooling in the extratropics driven by cloud configurations dominated 21 

by high and low clouds, respectively, albeit with magnitudes that differ from those observed. 22 

The evaluation we conducted requires that the model has the capability to produce 23 

cloudy subcolumns which are then considered equivalent to the atmospheric column profiles 24 

seen by the active observations. There is no unique way to go from mean cloud fraction profiles 25 

to subcolumns having layer cloud fractions is either one or zero. We tried two ways to produce 26 

subcolumns that assume different cloud fraction overlaps and obtained rather close results. By 27 

adopting our framework of cloud evaluation, which, incidentally, should be used in conjunction 28 

with other cloud evaluation methodologies (e.g., cloud regimes as in Jin et al. 2017a, b), one 29 
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can assess whether other large scale models are more sensitive (i.e., produce a greater diversity 1 

of CVS climatologies) to different overlap assumptions applied to the same original mean cloud 2 

fraction profiles. 3 

 4 
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 1 

List of Figures 2 

Figure 1. The original ten CVS classes of Oreopoulos et al. (2017) used as reference for the 3 

comparison of this paper. The multi-layer CVS classes other than “HL” are merged in this paper 4 

thus reducing the total number of CVS classes to seven. We essentially do no distinguish 5 

between contiguous and non-contiguous clouds in adjacent standard layers. 6 

Figure 2. Geographical RFO distribution (%) for cloudless skies and the seven CVS classes 7 

according to CloudSat/CALIPSO observations (top 8 panels), and for GEOS-5 (GN overlap 8 

assumption, bottom 8 panels). Global mean values are shown above each panel, in the case of 9 

GEOS-5 we provide the global values for both the GN and MR overlap (in parentheses). 10 

Figure 3. RFO difference (%) maps for clear skies (divided by two to use a common color scale) 11 

and the seven CVS classes as simulated by GEOS-5 using the GN and MR overlap assumptions in 12 

the cloudy subcolumn generator. 13 

Figure 4. Comparison between observations and model (GN and MR) of global cloudy-column 14 

CREs (W/m2) SW, LW, total=SW+LW CREs at TOA, SFC, and within ATM for each CVS class. 15 

Figure 5. As Fig. 3, but for grid-mean (RFO-weighted) CREs. 16 

Figure 6. Decomposition of grid-mean CRE error (eq. 1) for GEOS-5 CVS classes when the GN 17 

overlap assumption is used. The nine panels represent all combinations of CRE, namely SW, LW, 18 

total at TOA, SFC and within ATM. 19 

Figure 7. Comparison of the multi-year annual cycle of TOA, total (=SW+LW) grid-mean CRE 20 

zonal averages (W/m2) between observations (top row) and the model when employing the GN 21 

overlap assumption for the four CVS classes with the greatest grid-mean CREs according to Fig. 22 

5. The rightmost set of panels displays the scaled (half) total CRE of all CVS classes combined. 23 

Figure 8. As Fig.7, but for SFC total CRE. 24 

Figure 9. As Fig. 7, but for ATM total CRE. 25 

 26 
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 1 

 2 
 3 
Figure 1. The original ten CVS classes of Oreopoulos et al. (2017) used as reference for the 4 

comparison of this paper. The multi-layer CVS classes other than “HL” are merged in this paper 5 

thus reducing the total number of CVS classes to seven. We essentially do no distinguish 6 

between contiguous and non-contiguous clouds in adjacent standard layers. 7 
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 1 
Figure 2. Geographical RFO distribution (%) for cloudless skies and the seven CVS classes 2 

according to CloudSat/CALIPSO observations (top 8 panels), and for GEOS-5 (GN overlap 3 
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assumption, bottom 8 panels). Global mean values are shown above each panel, in the case of 1 

GEOS-5 we provide the global values for both the GN and MR overlap (in parentheses). 2 

 3 
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 1 

 2 
Figure 3. RFO difference (%) maps for clear skies (divided by two to use a common color scale) 3 

and the seven CVS classes as simulated by GEOS-5 using the GN and MR overlap assumptions in 4 

the cloudy subcolumn generator. 5 

 6 
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 1 

 2 
Figure 4. Comparison between observations and model (GN and MR) of global cloudy-column 3 

CREs (W/m2), SW, LW, total=SW+LW CREs at TOA, SFC, and within ATM for each CVS class. 4 

 5 
  6 

https://doi.org/10.5194/gmd-2019-216
Preprint. Discussion started: 4 September 2019
c© Author(s) 2019. CC BY 4.0 License.



 27 

 1 

 2 
Figure 5. As Fig. 3, but for grid-mean (RFO-weighted) CREs. 3 
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 1 

 2 
 3 
Figure 6. Decomposition of grid-mean CRE error (eq. 1) for GEOS-5 CVS classes when the GN 4 

overlap assumption is used. The nine panels represent all combinations of CRE, namely SW, LW, 5 

total at TOA, SFC and within ATM. 6 
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 1 

 2 
Figure 7. Comparison of the multi-year annual cycle of TOA, total (=SW+LW) grid-mean CRE 3 

zonal averages (W/m2) between observations (top row) and the model when employing the GN 4 

overlap assumption for the four CVS classes with the greatest grid-mean CREs according to Fig. 5 

5. The rightmost set of panels displays the scaled (half) total CRE of all CVS classes combined. 6 
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 1 
Figure 8. As Fig.7, but for SFC total CRE. 2 
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 1 
Figure 9. As Fig. 7, but for ATM total CRE. 2 
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