Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extreme elongation of asteroid 1620 Geographos from radar images

Abstract

MOST small asteroids are thought to result from catastrophic collisions1, and their shapes can provide insight into their origin and collisional evolution. Two main-belt asteroids have been successfully imaged by spacecraft2,3, but such images have yet to be obtained for asteroids that cross Earth's orbit. Earth-crossing asteroids are generally too small to be resolved by optical telescopes, and shape constraints derived from optical lightcurves are subject to large systematic biases4. Ground-based radar observations, on the other hand, have proved successful in resolving the shapes of some small asteroids5-9. We describe here radar measurements of the Earth-crossing asteroid 1620 Geographos during its recent close encounter with the Earth. We have determined the silhouette of Geographos along its rotation axis, and confirm earlier lightcurve-based conjectures10 that this object has a very unusual shape. The silhouette is irregular, non-convex and has an aspect ratio of 2.76 ± 0.21, establishing it as the most elongated Solar System object yet imaged. The unusual nature of the shape is underscored by laboratory fragmentation experiments11,12, in which the average aspect ratio of fragments is 1.4, with fewer than 1% as elongated as Geographos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farinella, P., Paolicchi, P. & Zappalá, V. Icarus 52, 409–433 (1982).

    Article  ADS  Google Scholar 

  2. Belton, M. J. S. et al. Science 257, 1647–1652 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Belton, M. J. S. et al. Science 265, 1543–1547 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Zappalá, V., Cellino, A., Barucci, M. A., Fulchignoni, M. & Lupishko, D. F. Astr. Astrophys. 231, 548–560 (1990).

    ADS  Google Scholar 

  5. Ostro, S. J., Campbell, D. B. & Shapiro, I. I. Astr. J. 88, 565–576 (1983).

    Article  ADS  Google Scholar 

  6. Ostro, S. J. et al. Astr. J. 99, 2012–2018 (1990).

    Article  ADS  Google Scholar 

  7. Ostro, S. J. et al. Science 252, 1399–1404 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Ostro, S. J. et al. Science 248, 1523–1528 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Hudson, R. S. & Ostro, S. J. Science 263, 940–943 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Dunlap, J. L. Astr. J. 79, 324–332 (1974).

    Article  ADS  Google Scholar 

  11. Fujiwara, A. et al. in Asteroids II (eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 240–265 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  12. Nakamura, A. Laboratory Studies on the Velocity of Fragments from Impact Disruption (ISAS Rep. 651, Inst. of Space and Astronautical Science, Yoshinodai Sagamihara, Kanagawa, Japan, 1993).

  13. Weaver, K. F. Nat. Geogr. Mag. 138(2), 147–193 (1970).

    Google Scholar 

  14. Gehrels, T. (ed.) Physical Studies of Minor Planets (NASA SP-267, US Govt Printing Office, Washington DC, 1971).

  15. Hudson, R. S. Remote Sensing Rev. 8, 195–203 (1993).

    Article  Google Scholar 

  16. Kwiatkowski, T. Astr. Astrophys. 294, 274–277 (1995).

    ADS  Google Scholar 

  17. Ostro, S. J., Connelly, R. & Belkora, L. Icarus 73, 15–24 (1988).

    Article  ADS  Google Scholar 

  18. Finney, D. J. Statistical Method in Biological Assay 2nd edn (Hafner, New York, 1964).

    MATH  Google Scholar 

  19. Magnusson, P. Icarus (submitted).

  20. Magnusson, P. et al. Icarus 97, 124–129 (1992).

    Article  ADS  Google Scholar 

  21. Binzel, R. P. et al. Icarus 105, 310–325 (1993).

    Article  ADS  Google Scholar 

  22. Binzel, R. P., Xu, S., Bus, S. J. & Bowell, E. Science 257, 779–782 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Ostro, S. J., Rosema, K. D. & Jurgens, R. F. Icarus 84, 334–351 (1990).

    Article  ADS  Google Scholar 

  24. Thomas, P. C. et al. Icarus 107, 23–36 (1993).

    Article  ADS  Google Scholar 

  25. Thomas, P. et al. (abstr.) Bull. Am. astr. Soc. 26, 1155 (1994).

    ADS  Google Scholar 

  26. Burns, J. A. in Satellites (ed. Burns, J. A.) 1–38 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  27. Rahe, J., Vanysek, V. & Weissman, P. R. in Hazards Due to Comets and Asteroids (ed. Gehrels, T.) 597–634 (Univ. Arizona Press, Tucson, 1994).

    Google Scholar 

  28. Housen, K. R. & Holsapple, K. A. Icarus 84, 226–253 (1990).

    Article  ADS  Google Scholar 

  29. Gault, D. E. & Wedekind, J. A. J. geophys. Res. 74, 6780–6794 (1969).

    Article  ADS  Google Scholar 

  30. Cerroni, P. Memorie Soc. astr. ital. 57, 13–45 (1986).

    ADS  CAS  Google Scholar 

  31. Fujiwara, A. Memorie Soc. astr. ital. 57, 47–64 (1986).

    ADS  Google Scholar 

  32. Ryan, E. V., Hartmann, W. K. & Davis, D. R. Icarus 94, 283–298 (1991).

    Article  ADS  Google Scholar 

  33. Giblin, I. et al. Icarus 110, 203–224 (1994).

    Article  ADS  Google Scholar 

  34. Capaccioni, F. et al. Icarus 66, 487–514 (1986).

    Article  ADS  CAS  Google Scholar 

  35. Paolicchi, P., Cellino, A., Farinella, P. & Zappalá, V. Icarus 77, 187–212 (1989).

    Article  ADS  Google Scholar 

  36. Bottke, W. F. Jr & Melosh, H. J. Lunar Planet. Sci. Conf. Abstr. 26, 153–154 (1995).

    ADS  Google Scholar 

  37. Hudson, R. S., Ostro, S. J. & Harris, A. W. (abstr.) Bull. Am. astro. Soc. 26, 1173 (1994).

    ADS  Google Scholar 

  38. Ostro, S. J. Rev. Mod. Phys. 65, 1235–1279 (1993).

    Article  ADS  Google Scholar 

  39. Priest, P. Goldstone Solar System Radar Capability and Performance (JPL Internal Rep. 1740-4, Jet Propulsion Laboratory, Pasadena, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostro, S., Rosema, K., Hudson, R. et al. Extreme elongation of asteroid 1620 Geographos from radar images. Nature 375, 474–477 (1995). https://doi.org/10.1038/375474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375474a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing