Skip to main content
Log in

Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; ~ 3 cm year−1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year−1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50–430 ppm and ca. 40–700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene–melt thermobarometry on rare clinopyroxene phenocrysts present in the SMAR magmas yield lower crustal crystallization/assimilation depths (10–13 km in the segment containing clinopyroxene). The Cl-excesses in SMAR melt inclusions indicate that assimilation occurred before crystallization, while also homogeneous Cl in melts from Gakkel Ridge indicate Cl addition during magma chamber processes. Combined, these observations imply that hydrothermal circulation reaches the lower crust at slow-spreading ridges, and thereby promotes cooling of the lower crust. The generally lower Cl-excess at slow-spreading ridges (compared to fast-spreading ridges) is probably related to them having few if any permanent magma chambers. Magmas therefore do not fractionate as extensively in the crust, providing less heat for assimilation (on average, slow-spreading ridge magmas have higher Mg#), and hydrothermal systems are ephemeral, leading to lower total degrees of crustal alteration and more variation in the amount of Cl contamination. Hydrothermal plumes and vent fields have samples in close vicinity that display Cl-excess, mostly of > 25 ppm, which thus can aid as a guide for the exploration of (active or extinct) hydrothermal vent fields on the axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeev RR, Holtz F, Koepke J, Ariskin AA (2007a) The effect of minor H2O content on crystallisation in MORB: experiments, model, applications. In: Goldschmidt 2007 abstracts Geochim Cosmochim Acta vol 71 (15S1). p A15

  • Almeev RR, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007b) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Miner 92(4):670–674

    Article  Google Scholar 

  • Almeev R, Holtz F, Koepke J, Haase K, Devey C (2008) Depths of partial crystallization of H2O-bearing MORB: phase equilibria simulations of basalts at the MAR near Ascension Island (7–11 S). J Petrol 49(1):25–45

    Article  Google Scholar 

  • Almeev RR, Holtz F, Koepke J, Parat F (2012) Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa. Am Miner 97(7):1234–1240

    Article  Google Scholar 

  • Alt JC, Bach W (2006) Oxygen isotope composition of a section of lower oceanic crust, ODP hole 735B. Geochem Geophys Geosyst 7(12):Q12008. https://doi.org/10.1029/2006GC001385

    Article  Google Scholar 

  • Alt JC, Teagle DA (2003) Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem Geol 201(3):191–211

    Article  Google Scholar 

  • Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater–basalt interactions. J Geophys Res Solid Earth 91(B10):10309–10335

    Article  Google Scholar 

  • Anderson MO, Chadwick WW, Hannington MD, Merle SG, Resing JA, Baker ET, Butterfield DA, Walker SL, Augustin N (2017) Geological interpretation of volcanism and segmentation of the Mariana back-are spreading center between 12.7°N and 18.3°N. Geochem Geophys Geosyst 18(6):2240–2274

    Article  Google Scholar 

  • Ariskin AA, Barmina GS (2004) COMAGMAT: development of a magma crystallization model and its petrological applications. Geochem Int 42(1):S1–S157

    Google Scholar 

  • Augustin N, Lackschewitz K, Kuhn T, Devey CW (2008) Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15 N). Mar Geol 256(1):18–29

    Article  Google Scholar 

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B–Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3). https://doi.org/10.1029/2002GC000419

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interactions: First insights from ODP Leg 209, MAR 15 N. Geochem Geophys Geosyst 5(9). https://doi.org/10.1029/2004GC000744

  • Baker ET, Edmonds HN, Michael PJ, Bach W, Dick HJB, Snow JE, Walker SL, Banerjee NR, Langmuir CH (2004) Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian ridges. Geochem Geophys Geosyst 5(8):Q08002. https://doi.org/10.1029/2004GC000712

    Article  Google Scholar 

  • Barnes JD, Cisneros M (2012) Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chem Geol 326–327:51–60. https://doi.org/10.1016/j.chemgeo.2012.07.022

    Article  Google Scholar 

  • Bédard JH (1991) Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. J Geol 2:225–249

    Article  Google Scholar 

  • Bédard JH, Hébert R (1996) The lower crust of the Bay of Islands ophiolite, Canada: petrology, mineralogy, and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. J Geophys Res Solid Earth 101(B11):25105–25124. https://doi.org/10.1029/96JB01343

    Article  Google Scholar 

  • Bédard JH, Hebert R, Berclaz A, Varfalvy V (2000) Syntexis and the genesis of lower oceanic crust. In: Dilek Y (ed) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Geological Society of America, pp 105–120

  • Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am Miner 94(1):105–120

    Article  Google Scholar 

  • Berndt ME, Seyfried WE Jr (1990) Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids. Geochim Cosmochim Acta 54(8):2235–2245. https://doi.org/10.1016/0016-7037(90)90048-P

    Article  Google Scholar 

  • Berry AJ, O’Neill HStC, Rowe MC, Moselmans JFW, Rivard C (2017) The oxidation state of iron in basaltic glasses. In: Goldschmidt 2017 abstracts. Nr 327

  • Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1987) Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport. Am J Sci 287(10):953–978

    Article  Google Scholar 

  • Bruguier N, Minshull T, Brozena J (2003) Morphology and tectonics of the Mid-Atlantic Ridge, 7°–12°S. J Geophys Res Solid Earth 108(B2)

  • Cannat M (1996) How thick is the magmatic crust at slow spreading oceanic ridges? J Geophys Res Solid Earth 101(B2):2847–2857

    Article  Google Scholar 

  • Cannat M, Mével C, Stakes D (1991) Stretching of the deep crust at the slow-spreading Southwest Indian ridge. Tectonophysics 190(1):73–94. https://doi.org/10.1016/0040-1951(91)90355-V

    Article  Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartin J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34(7):605–608

    Article  Google Scholar 

  • Cherkaoui AS, Wilcock WS, Dunn RA, Toomey DR (2003) A numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge. Geochem Geophys Geosyst 4(9):8616

    Article  Google Scholar 

  • Coakley BJ, Cochran JR (1998) Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet Sci Lett 162(1):81–95

    Article  Google Scholar 

  • Coogan LA (2003) Contaminating the lower crust in the Oman ophiolite. Geology 31(12):1065–1068. https://doi.org/10.1130/g20129.1

    Article  Google Scholar 

  • Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem Geophys Geosyst 1(9):1044. https://doi.org/10.1029/2000GC000072

    Article  Google Scholar 

  • Coogan LA, Mitchell NC, O’Hara MJ (2003) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res Solid Earth 108(B1):ECV2-1–ECV2-14

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80

    Article  Google Scholar 

  • Detrick RS, Mutter JC, Buhl P, Kim II (1990) No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge. Nature 347(6288):61–64

    Article  Google Scholar 

  • Devey CW, Lackschewitz KS, Baker E (2005) Hydrothermal and volcanic activity found on the Southern Mid-Atlantic Ridge. EOS Trans Am Geophys Union 86(22):209–212. https://doi.org/10.1029/2005EO220001

    Article  Google Scholar 

  • Devey CW, German C, Haase K, Lackschewitz K, Melchert B, Connelly D (2010) The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds) Diversity of hydrothermal systems on slow spreading ocean ridges, pp 133–152

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y-L, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm H-U, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian ridge. Earth Planet Sci Lett 179(1):31–51. https://doi.org/10.1016/S0012-821X(00)00102-3

    Article  Google Scholar 

  • Dick H, Ozawa K, Meyer P, Niu Y, Robinson P, Constantin M, Hebert R, Maeda J, Natland J, Hirth G (2002) Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian ridge. Proc Ocean Drill Program Sci Results 176:1–61

    Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426(6965):405–412

    Article  Google Scholar 

  • Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30°N). Chem Geol 264(1–4):71–88. https://doi.org/10.1016/j.chemgeo.2009.02.013

    Article  Google Scholar 

  • Dunn RA, Toomey DR, Solomon SC (2000) Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. J Geophys Res Solid Earth 105(B10):23537–23555

    Article  Google Scholar 

  • Edmonds HN, Michael PJ, Baker ET, Connelly DP, Snow JE, Langmuir CH, Dick HJB, Muhe R, German CR, Graham DW (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421(6920):252–256. http://www.nature.com/nature/journal/v421/n6920/suppinfo/nature01351_S1.html

  • Elkins L, Sims K, Prytulak J, Blichert-Toft J, Elliott T, Blusztajn J, Fretzdorff S, Reagan M, Haase K, Humphris S (2014) Melt generation beneath Arctic ridges: implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. Geochim Cosmochim Acta 127:140–170

    Article  Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743

    Google Scholar 

  • Erdmann M, France L, Fischer LA, Deloule E, Koepke J (2017) Trace elements in anatectic products at the roof of mid-ocean ridge magma chambers: an experimental study. Chem Geol 456:43–57. https://doi.org/10.1016/j.chemgeo.2017.03.004

    Article  Google Scholar 

  • Expedition Scientific Party (2005) Oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation. IODP Prelim Rep. https://doi.org/10.2204/iodp.pr.305.2005

    Google Scholar 

  • Fietzke J, Frische M (2016) Experimental evaluation of elemental behavior during LA-ICP-MS: influences of plasma conditions and limits of plasma robustness. J Anal At Spectrom. 31(1):234–244. https://doi.org/10.1039/C5JA00253B

    Article  Google Scholar 

  • Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen T, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom 23(7):955–961

    Article  Google Scholar 

  • Fischer LA, Erdmann M, France L, Wolff PE, Deloule E, Zhang C, Godard M, Koepke J (2016) Trace element evidence for anatexis at oceanic magma chamber roofs and the role of partial melts for contamination of fresh MORB. Lithos 260:1–8. https://doi.org/10.1016/j.lithos.2016.05.001

    Article  Google Scholar 

  • Fouquet Y (1997) Where are the large hydrothermal sulphide deposits in the oceans? Philos Trans R Soc Math Phys Eng Sci 355(1723):427–441

    Article  Google Scholar 

  • Fournier R (1987) Conceptual models of brine evolution in magmatic-hydrothermal systems. US Geol Surv Prof Pap 1350(2):1487–1506

    Google Scholar 

  • France L, Ildefonse B, Koepke J (2009) Interactions between magma and hydrothermal system in Oman ophiolite and in IODP Hole 1256D: Fossilization of a dynamic melt lens at fast spreading ridges. Geochem Geophys Geosyst 10(10).https://doi.org/10.1029/2009GC002652

  • France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Miner Petrol 160(5):683–704

    Article  Google Scholar 

  • France L, Koepke J, MacLeod CJ, Ildefonse B, Godard M, Deloule E (2014) Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202–203:120–137. https://doi.org/10.1016/j.lithos.2014.05.018

    Article  Google Scholar 

  • German C, Connelly D, Evans A, Parson L (2002) Hydrothermal activity on the southern Mid-Atlantic Ridge. In: AGU Fall Meeting Abstracts, vol 1. p 1361

  • Gillis KM, Thompson G, Kelley DS (1993) A view of the lower crustal component of hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res Solid Earth 98(B11):19597–19619. https://doi.org/10.1029/93JB01717

    Article  Google Scholar 

  • Gillis KM, Coogan LA, Chaussidon M (2003) Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth Planet Sci Lett 213(3–4):447–462. https://doi.org/10.1016/s0012-821x(03)00346-7

    Article  Google Scholar 

  • Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-ridge). Earth Planet Sci Lett 279(1–2):110–122. https://doi.org/10.1016/j.epsl.2008.12.034

    Article  Google Scholar 

  • Goldstein SL, Soffer G, Langmuir CH, Lehnert KA, Graham DW, Michael PJ (2008) Origin of a `Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature 453(7191):89–93. http://www.nature.com/nature/journal/v453/n7191/suppinfo/nature06919_S1.html

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res Solid Earth 86(B4):2737–2755

    Article  Google Scholar 

  • Grevemeyer I, Reston TJ, Moeller S (2013) Microseismicity of the Mid-Atlantic Ridge at 7°S–8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N–14°50′N. Geochem Geophys Geosyst 14(9):3532–3554

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow spreading ridge: constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30 N, MAR). Geochem Geophys Geosyst 9(8). https://doi.org/10.1029/2008GC002063

  • Haase K, Brandl PA, Devey CW, Hauff F, Melchert B, Garbe-Schönberg D, Kokfelt T, Paulick H (2016) Compositional variation and 226Ra-230Th model ages of axial lavas from the southern Mid-Atlantic Ridge, 8°48′S. Geochem Geophys Geosyst 17(1):199–218

    Article  Google Scholar 

  • Harper GD (1985) Tectonics of slow spreading mid-ocean ridges and consequences of a variable depth to the brittle/ductile transition. Tectonics 4(4):395–409. https://doi.org/10.1029/TC004i004p00395

    Article  Google Scholar 

  • Hart S, Erlank A, Kable E (1974) Sea floor basalt alteration: some chemical and Sr isotopic effects. Contrib Miner Petrol 44(3):219–230

    Article  Google Scholar 

  • Hasenclever J, Theissen-Krah S, Rüpke LH, Morgan JP, Iyer K, Petersen S, Devey CW (2014) Hybrid on-axis plus ridge-perpendicular circulation reconciles hydrothermal flow observations at fast spreading ridges. Nature 508:508–512

    Article  Google Scholar 

  • Hoernle K, Hauff F, Kokfelt TF, Haase K, Garbe-Schönberg D, Werner R (2011) On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-ridge (5–11°S): shallow or deep recycling of ocean crust and/or intraplate volcanism? Earth Planet Sci Lett 306(1–2):86–97. https://doi.org/10.1016/j.epsl.2011.03.032

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314

    Article  Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79(1–2):33–45. https://doi.org/10.1016/0012-821X(86)90038-5

    Article  Google Scholar 

  • International Seismological Centre (2011) On-line bulletin. International Seismological Centre. http://www.isc.ac.uk. Accessed 19 Dec 2012

  • Ito E, Harris DM, Anderson AT Jr (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47(9):1613–1624. https://doi.org/10.1016/0016-7037(83)90188-6

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47. https://doi.org/10.1111/j.1751-908X.1980.tb00273.x

    Article  Google Scholar 

  • Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13(2):Q02005

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7(2). https://doi.org/10.1029/2005GC001060

  • Jokat W, Ritzmann O, Schmidt-Aursch MC, Drachev S, Gauger S, Snow J (2003) Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423(6943):962–965. http://www.nature.com/nature/journal/v423/n6943/suppinfo/nature01706_S1.html

  • Kawahata H, Nohara M, Ishizuka H, Hasebe S, Chiba H (2001) Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. J Geophys Res Solid Earth 106(B6):11083–11099. https://doi.org/10.1029/2000JB900456

    Article  Google Scholar 

  • Kelemen PB, Aharonov E (1998) Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at Mid-Ocean ridges. American Geophysical Union, pp 267–289

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375(6534):747–753

    Article  Google Scholar 

  • Kelemen PB, Koga K, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146(3–4):475–488. https://doi.org/10.1016/S0012-821X(96)00235-X

    Article  Google Scholar 

  • Kendrick MA, Arculus R, Burnard P, Honda M (2013) Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165. https://doi.org/10.1016/j.gca.2013.09.012

    Article  Google Scholar 

  • Kendrick MA, Hemond C, Kamenetsky VS, Danyushevsky L, Devey CW, Rodemann T, Jackson MG, Perfit MR (2017) Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat Geosci 10:222–228. https://doi.org/10.1038/NGEO2902

    Article  Google Scholar 

  • Kent AJR, Norman MD, Hutcheon ID, Stolper EM (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem Geol 156(1–4):299–319. https://doi.org/10.1016/S0009-2541(98)00188-0

    Article  Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92(B8):8089–8115. https://doi.org/10.1029/JB092iB08p08089

    Article  Google Scholar 

  • Klügel A (1998) Reactions between mantle xenoliths and host magma beneath La Palma (Canary Islands): constraints on magma ascent rates and crustal reservoirs. Contrib Miner Petrol 131(2–3):237–257

    Google Scholar 

  • Kovalenko VI, Naumov VB, Girnis AV, Dorofeeva VA, Yarmolyuk VV (2006) Estimation of the average contents of H2O, Cl, F, and S in the depleted mantle on the basis of the compositions of melt inclusions and quenched glasses of mid-ocean ridge basalts. Geochem Int 44(3):209–231. https://doi.org/10.1134/s0016702906030013

    Article  Google Scholar 

  • Kvassnes AS, Grove T (2008) How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contrib Miner Petrol 156(1):49–71. https://doi.org/10.1007/s00410-007-0273-x

    Article  Google Scholar 

  • Labidi J, Cartigny P, Hamelin C, Moreira M, Dosso L (2014) Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim Cosmochim Acta 133:47–67. https://doi.org/10.1016/j.gca.2014.02.023

    Article  Google Scholar 

  • le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251(3–4):209–231. https://doi.org/10.1016/j.epsl.2006.09.012

    Google Scholar 

  • Lecuyer C, Reynard B (1996) High-temperature alteration of oceanic gabbros by seawater (Hess Deep, Ocean Drilling Program Leg 147): evidence from oxygen isotopes and elemental fluxes. J Geophys Res Solid Earth 101(B7):15883–15897. https://doi.org/10.1029/96JB00950

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir C, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1(5):1012. https://doi.org/10.1029/1999GC000026

    Article  Google Scholar 

  • Lissenberg CJ, Dick HJB (2008) Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271(1–4):311–325. https://doi.org/10.1016/j.epsl.2008.04.023

    Article  Google Scholar 

  • Lissenberg CJ, Bédard JH, van Staal CR (2004) The structure and geochemistry of the gabbro zone of the Annieopsquotch ophiolite, newfoundland: implications for lower crustal accretion at spreading ridges. Earth Planet Sci Lett 229(1–2):105–123. https://doi.org/10.1016/j.epsl.2004.10.029

    Article  Google Scholar 

  • Lissenberg CJ, Rioux M, Shimizu N, Bowring SA, Mével C (2009) Zircon dating of oceanic crustal accretion. Science 323(5917):1048–1050. https://doi.org/10.1126/science.1167330

    Article  Google Scholar 

  • Maclennan J, Hulme T, Singh SC (2005) Cooling of the lower oceanic crust. Geology 33(5):357–366. https://doi.org/10.1130/g21207.1

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Melchert B, Devey CW, German C, Lackschewitz K, Seifert R, Walter M, Mertens C, Yoerger D, Baker E, Paulick H (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275(1):61–69

    Article  Google Scholar 

  • Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges. In: Peters TJ, Nicolas A, Coleman R (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Springer, pp 293–312

  • Meyer P, Dick HB, Thompson G (1989) Cumulate gabbros from the Southwest Indian ridge, 54°S–7°16′E: implications for magmatic processes at a slow spreading ridge. Contrib Miner Petrol 103(1):44–63. https://doi.org/10.1007/BF00371364

    Article  Google Scholar 

  • Michael P (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131(3–4):301–320. https://doi.org/10.1016/0012-821X(95)00023-6

    Article  Google Scholar 

  • Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103(B8):18325–18356. https://doi.org/10.1029/98jb00791

    Article  Google Scholar 

  • Michael PJ, Graham DW (2015) The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts. Lithos 236–237:338–351. https://doi.org/10.1016/j.lithos.2015.08.020

    Article  Google Scholar 

  • Morgan JP, Chen YJ (1993) The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow. J Geophys Res Solid Earth 98(B4):6283–6297

    Article  Google Scholar 

  • Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53(12):3131–3143. https://doi.org/10.1016/0016-7037(89)90094-x

    Article  Google Scholar 

  • Michael P, Langmuir C, Dick H, Snow J, Goldstein S, Graham D, Lehnert K, Kurras G, Jokat W, Mühe R (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 423(6943):956–961

    Article  Google Scholar 

  • Minshull T, Bruguier N, Brozena J (1998) ridge-plume interactions or mantle heterogeneity near Ascension Island? Geology 26(2):115–118

    Article  Google Scholar 

  • Wise SA, Watters RL (2012) Certificate of Analysis, Standard Reference Material 610. National Institute of Standards and Technology. http://www.nist.gov/srm

  • Möller H (2002) Magma Genesis and Mantle Source at the Mid-Atlantic Ridge East of Ascension Island. Dissertation at Christian-Albrechts-Univeristät zu Kiel

  • Montési LG, Behn MD (2007) Mantle flow and melting underneath oblique and ultraslow Mid-Ocean ridges. Geophys Res Lett 34(24). https://doi.org/10.1029/2007GL031067

  • Mottl M (2003) Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. In: Halbach P, Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine hydrothermal systems. Dahlem University Press, Berlin, pp 271–286

    Google Scholar 

  • Nehlig P, Juteau T (1988) Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman). Tectonophysics 151(1–4):199–221. https://doi.org/10.1016/0040-1951(88)90246-6

    Article  Google Scholar 

  • Nicolas A, Mainprice D, Boudier F (2003) High-temperature seawater circulation throughout crust of oceanic ridges: a model derived from the Oman ophiolites. J Geophys Res Solid Earth 108(B8):2371. https://doi.org/10.1029/2002JB002094

    Article  Google Scholar 

  • Niu Y, Hekinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, vol 2. Pergamon, Oxford, pp 1–38

    Google Scholar 

  • Paulick H, Münker C, Schuth S (2010) The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism: evidence from the southern Mid-Atlantic Ridge (7 30′S to 11 30′S) and Ascension Island. Earth Planet Sci Lett 296(3–4):299–310. https://doi.org/10.1016/j.epsl.2010.05.009

    Article  Google Scholar 

  • Pontbriand CW, Soule SA, Sohn RA, Humphris SE, Kunz C, Singh H, Nakamura Ki, Jakobsson M, Shank T (2012) Effusive and explosive volcanism on the ultraslow-spreading Gakkel Ridge, 85°E. Geochem Geophys Geosyst 13(10). https://doi.org/10.1029/2012GC004187

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Miner Geochem 69(1):61–120

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123(1):92–108

    Article  Google Scholar 

  • Reid I, Jackson H (1981) Oceanic spreading rate and crustal thickness. Mar Geophys Res 5(2):165–172

    Google Scholar 

  • Ridley WI, Perfit MR, Smith MC, Fornari DJ (2006) Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50′N. Geochem Geophys Geosyst 7(12):Q12O04. https://doi.org/10.1029/2006GC001316

    Article  Google Scholar 

  • Roeder P, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29(4):275–289

    Article  Google Scholar 

  • Rubin KH, Sinton JM (2007) Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet Sci Lett 260(1–2):257–276. https://doi.org/10.1016/j.epsl.2007.05.035

    Article  Google Scholar 

  • Rutherford MJ (2008) Magma ascent rates. Rev Miner Geochem 69(1):241–271

    Article  Google Scholar 

  • Ryabchikov ID (2001) Deep geospheres and ore genesis. Geol Rudn Mestorozhd 43:195–207

    Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419(6906):451–455. http://www.nature.com/nature/journal/v419/n6906/suppinfo/nature01073_S1.html

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05B07 https://doi.org/10.1029/2003gc000597

  • Sanfilippo A, Tribuzio R, Tiepolo M (2014) Mantle–crust interactions in the oceanic lithosphere: constraints from minor and trace elements in olivine. Geochim Cosmochim Acta 141:423–439. https://doi.org/10.1016/j.gca.2014.06.012

    Article  Google Scholar 

  • Sano T, Miyoshi M, Ingle S, Banerjee NR, Ishimoto M, Fukuoka T (2008) Boron and chlorine contents of upper oceanic crust: Basement samples from IODP Hole 1256D. Geochem Geophys Geosyst 9(12):Q12O15. https://doi.org/10.1029/2008GC002182

    Article  Google Scholar 

  • Sauter D, Cannat M, Rouméjon S, Andreani M, Birot D, Bronner A, Brunelli D, Carlut J, Delacour A, Guyader V (2013) Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat Geosci 6(4):314

    Article  Google Scholar 

  • Schramm B, Devey CW, Gillis KM, Lackschewitz K (2005) Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Rise basalts from 0 to 9 Ma. Chem Geol 218(3–4):281–313. https://doi.org/10.1016/j.chemgeo.2005.01.011

    Article  Google Scholar 

  • Shaw C, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral-melt reaction. Miner Petrol 74(2–4):163–187

    Article  Google Scholar 

  • Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM (2010) Deep pooling of low degree melts and volatile fluxes at the 85 E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289(3):311–322

    Article  Google Scholar 

  • Shishkina T, Botcharnikov R, Holtz F, Almeev R, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277(1):115–125

    Article  Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Ridley WI, Reed MH, Cann JR (2006) Incorporation of seawater into mid-ocean ridge lava flows during emplacement. Earth Planet Sci Lett 252(3–4):289–307. https://doi.org/10.1016/j.epsl.2006.09.043

    Article  Google Scholar 

  • Stakes D, Vanko DA (1986) Multistage hydrothermal alteration of gabbroic rocks from the failed Mathematician ridge. Earth Planet Sci Lett 79(1–2):75–92. https://doi.org/10.1016/0012-821X(86)90042-7

    Article  Google Scholar 

  • Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res Solid Earth 99(B2):3081–3095

    Article  Google Scholar 

  • Stolper E (1982) The speciation of water in silicate melts. Geochim Cosmochim Acta 46(12):2609–2620

    Article  Google Scholar 

  • Stroncik NA, Haase KM (2004) Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. Geology 32(11):945–948. https://doi.org/10.1130/g21027.1

    Article  Google Scholar 

  • Stroncik NA, Niedermann S (2016) Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation. Geochim Cosmochim Acta 172:306–321. https://doi.org/10.1016/j.gca.2015.09.016

    Article  Google Scholar 

  • Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH, Arculus RJ (2007) Chlorine in submarine volcanic glasses from the eastern manus basin. Geochim Cosmochim Acta 71(6):1542–1552. https://doi.org/10.1016/j.gca.2006.12.003

    Article  Google Scholar 

  • Urann BM, Le Roux V, Hammond K, Marschall HR, Lee C-TA, Monteleone BD (2017) Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle. Contrib Miner Petrol 172(7):51. https://doi.org/10.1007/s00410-017-1368-7

    Article  Google Scholar 

  • van der Zwan FM, Fietzke J, Devey CW (2012) Precise measurement of low (< 100 ppm) chlorine concentrations in submarine basaltic glass by electron microprobe. J Anal At Spectrom 27:1966–1974

    Article  Google Scholar 

  • van der Zwan FM, Devey CW, Augustin N, Almeev RR, Bantan RA, Basaham A (2015) Hydrothermal activity at the ultraslow- to slow-spreading Red Sea Rift traced by chlorine in basalt. Chem Geol 405:63–81. https://doi.org/10.1016/j.chemgeo.2015.04.001

    Article  Google Scholar 

  • Vine F, Moores E (1972) A model for the gross structure, petrology, and magnetic properties of oceanic crust. Geol Soc Am Mem 132:195–206

    Article  Google Scholar 

  • Wanless V, Perfit M, Ridley W, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51(12):2377–2410

    Article  Google Scholar 

  • Wanless V, Perfit M, Ridley W, Wallace P, Grimes C, Klein E (2011) Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: the role of assimilation at spreading centers. Chem Geol 287(1):54–65

    Article  Google Scholar 

  • Weaver SJ, Langmuir CH (1990) Calculation of phase equilibrium in mineral-melt systems. Comput Geosci 16(1):1–19

    Article  Google Scholar 

  • Yamashita S, Kitamura T, Kusakabe M (1997) Infrared spectroscopy of hydrous glasses of arc magma compositions. Geochem J Jpn 31:169–174

    Article  Google Scholar 

  • Zhang C, Wang L-X, Marks MAW, France L, Koepke J (2017) Volatiles (CO2, S, F, Cl, Br) in the dike-gabbro transition zone at IODP Hole 1256D: magmatic imprint versus hydrothermal influence at fast-spreading mid-ocean ridge. Chem Geol 459:43–60. https://doi.org/10.1016/j.chemgeo.2017.04.002

    Article  Google Scholar 

  • Zhao M, Canales JP, Sohn RA (2012) Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N–26°20′N). Geochem Geophys Geosyst 13(11). https://doi.org/10.1029/2012GC004454

Download references

Acknowledgements

We are very grateful to Mario Thöner for the extensive technical assistance at the EMP and to Dagmar Rau for the technical assistance at the LA-ICP-MS. Further, we like to thank Jan Fietzke (all GEOMAR) for the help with the modification of the Cl measurement method for the melt inclusions. The suggestion of three anonymous reviewers and editorial handling by Jochen Hoefs was greatly appreciated. We acknowledge generous financial support from the Jeddah Transect Project between King Abdulaziz University and Helmholtz-Center for Ocean Research GEOMAR that was funded by King Abdulaziz University (KAU) Jeddah, Saudi Arabia, under Grant no. (T-065/430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Froukje M. van der Zwan.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Zwan, F.M., Devey, C.W., Hansteen, T.H. et al. Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions. Contrib Mineral Petrol 172, 97 (2017). https://doi.org/10.1007/s00410-017-1418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1418-1

Keywords

Navigation