Skip to main content
Log in

Radio-colouration of diamond: a spectroscopic study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We have undertaken a study of the common green or orange-brown spots at the surface of rough diamond specimens, which are caused by alpha particles emanating from radioactive sources outside the diamond. Richly coloured haloes represent elevated levels of structural damage, indicated by strong broadening of the main Raman band of diamond, intense strain birefringence, and up-doming of spots due to their extensive volume expansion. Green radio-colouration was analogously generated through the irradiation of diamond with 8.8 MeV helium ions. The generation of readily visible radio-colouration was observed after irradiating diamond with ≥1015 He ions per cm2. The accumulation of such a high number of alpha particles requires irradiation of the diamond from a radioactive source over long periods of time, presumably hundreds of millions of years in many cases. In the samples irradiated with He ions, amorphisation was observed in volume areas where the defect density exceeded 5 × 10−3 Å−3 (or 0.03 dpa; displacements per target atom). In contrast, graphitisation as a direct result of the ion irradiation was not observed. The green colouration transformed to brown at moderate annealing temperatures (here 450 °C). The colour transformation is associated with only partial recovery of the radiation damage. The colour change is mainly due to the destruction of the GR1 centre, explained by trapping of vacancies at A defects to form the H3 centre. An activation energy of ~2.4 ± 0.2 eV was determined for the GR1 reduction. The H3 centre, in turn, causes intense yellowish-green photoluminescence under ultraviolet illumination. Radio-colouration and associated H3 photoluminescence are due to point defects created by the ions irradiated, whereas lattice ionisation is of minor importance. This is concluded from the depth distribution of the colouration and the photoluminescence intensity (which corresponds to the defect density but not the ionisation distribution pattern). The effect of the implanted He ions themselves on the colour and photoluminescence seems to be negligible, as radio-colouration and H3 emission were analogously produced through irradiation of diamond with C ions. The photoluminescence emission becomes observable at extremely low defect densities on the order of 10−6 Å−3 (or 0.000006 dpa) and is suppressed at moderate defect densities of ~5 × 10−4 Å−3 (or ~0.003 dpa). Intensely brown-coloured diamond hence does not show the H3 emission anymore. Anneals up to 1,600 °C has reduced considerably irradiation damage and radio-colouration, but the structural reconstitution of the diamond (and its de-colouration) was still incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ager JW III, Han S, Prussin SG, Wagner RS, Pan LS, Kania DR, Lane SM (1994) Spatially resolved measurement of lattice damage in alpha-particle-irradiated type IIa natural diamond by confocal photoluminescence microscopy. J Appl Phys 76:4050–4053

    Article  Google Scholar 

  • Alekseev AG, Amosov VN, Krasilnikov AV, Tugrainov SN, Frunze VV, Tsutskikh AYu (2000) Transformation of GR1 defects in annealed natural type IIa diamonds. Tech Phys Lett 26:1–7

    Article  Google Scholar 

  • Armitage MH (1993) Radioactive halos in a diamond. Am Lab 25:28–30

    Google Scholar 

  • Baldwin KJ, Batchelder DN (2001) Confocal Raman microspectroscopy through a planar interface. Appl Spectrosc 55:517–524

    Article  Google Scholar 

  • Beirau T, Bismayer U, Mihailova B, Paulmann C, Groat L (2010) Structural phenomena of metamict titanite: a synchrotron, X-ray diffraction and vibrational spectroscopic study. Phase Transit 83:694–702

    Article  Google Scholar 

  • Bhatia KL, Fabian S, Kalbitzer S, Klatt C, Krätschmer W, Stoll R, Sellschop JFP (1998) Optical effects in carbon-ion irradiated diamond. Thin Solid Films 324:11–18

    Article  Google Scholar 

  • Bosia F, Argiolas N, Bazzan M, Olivero P, Picollo F, Sordini A, Vannoni M, Vittone E (2011) Modification of the structure of diamond with MeV ion implantation. Diamond Relat Mater 20:774–778

    Article  Google Scholar 

  • Bosshart G (1989) The Dresden Green. J Gemmol 21:351–362

    Google Scholar 

  • Bosshart G (2009) Mineralogical and physical properties and thermal instability of natural green diamond colours. GIT 2008: 2nd Intl Gem Jewelry Conf, Gemmol Inst Thailand, Bangkok, March, 2009

  • Bourgoin JC, Lannoo M (1983) Point defects in semiconductors II. Experimental aspects. Springer series in solid-state sciences vol 35. Springer, Berlin, p 295

    Book  Google Scholar 

  • Bridges F, Davies G, Robertson J, Stoneham AM (1990) The spectroscopy of crystal defects: a compendium of defect nomenclature. J Phys Condens Matter 2:2875–2928

    Article  Google Scholar 

  • Bruce LF, Kopylova MG, Longo M, Ryder J, Dobrzhinetskaya LF (2011) Luminescence of diamond from metamorphic rocks. Am Mineral 96:14–22

    Article  Google Scholar 

  • Clark CD, Walker J (1973) The neutral vacancy in diamond. P R Soc Lond A Mater 334:241–257

    Article  Google Scholar 

  • Clark CD, Ditchburn RW, Dyer HB (1956) The absorption spectra of irradiated diamonds after heat treatment. P R Soc Lond A Mat 237:75–89

    Article  Google Scholar 

  • Collins AT (1974) Visible luminescence from diamond. Ind Diamond Rev 34:131–137

    Google Scholar 

  • Collins AT (2005) Optical centres produced in diamond by radiation damage. New Diamond Front C Technol 17:47–61

    Google Scholar 

  • Collins AT, Kiflawi I (2009) The annealing of radiation damage in type Ia diamond. J Phys Condens Mat 21:364209

    Article  Google Scholar 

  • Collins AT, Ly C-H (2002) Misidentification of nitrogen—vacancy absorption in diamond. J Phys Condens Matter 21:364209

    Article  Google Scholar 

  • Collins AT, Connor A, Ly C-H, Shareef A, Spear PM (2005) High-temperature annealing of optical centers in type-I diamond. J Appl Phys 97:083517

    Article  Google Scholar 

  • Crookes W (1904) On the action of radium emanations on diamond. P R Soc London 74:47–49

    Article  Google Scholar 

  • Davies G (1999) Current problems in diamond: towards a quantitative understanding. Physica B 273–274:15–23

    Google Scholar 

  • Davies G, Lawson SC, Collins AT, Mainwood A, Sharp SJ (1992) Vacancy related centers in diamond. Phys Rev B 46:13157–13170

    Article  Google Scholar 

  • De Weerdt F, Collins AT (2007) Broad-band luminescence in natural brown type Ia diamonds. Diamond Relat Mater 16:512–516

    Article  Google Scholar 

  • De Wolf I, Jiménez J, Landesmann J-P, Frigeri C, Braun P, Da Silva E, Calvet E (1998) Raman and luminescence spectroscopy for microelectronics. Catalogue of optical and physical parameters. “Nostradamus” project SMT4–CT–95–2024. Office for Official Publications of the European Communities, Luxembourg

  • Dijkman FG, van der Maas JH (1976) Dependence of bandshape and depolarization ratio on slitwidth. Appl Spectrosc 30:545–546

    Article  Google Scholar 

  • Dooley SP, Jamieson DN, Prawer S (1993) He+ and H+ microbeam damage, swelling and annealing in diamond. Nucl Instrum Methods B 77:484–491

    Article  Google Scholar 

  • Everall NJ (2000) Modelling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl Spectrosc 54:773–782

    Article  Google Scholar 

  • Everall NJ, Lapham J, Adar F, Whitley A, Lee E, Mamedov S (2007) Optimizing depth resolution in confocal Raman microscopy: a comparison of metallurgical, dry corrected, and oil immersion objectives. Appl Spectrosc 61:251–259

    Article  Google Scholar 

  • Field JE (1979) The properties of diamond. Academic Press, London, p 674

    Google Scholar 

  • Fontaine F, Deneuville A, Gheeraert E, Gonon P, Abello L, Lucazeau G (1994) Reality of doping by boron implantation of CVD polycrystalline diamond from a comparison of Raman and electrical measurements. Diamond Relat Mater 3:623–627

    Article  Google Scholar 

  • Friedland E, Carstanjen HD, Myburg G, Nasr MA (2005) Dependence of damage efficiency of ions in diamond on electronic stopping. Nucl Instrum Method B 230:129–135

    Article  Google Scholar 

  • Gentry RV (1974) Radiohalos in a radiochronological and cosmological perspective. Science 184:62–66

    Article  Google Scholar 

  • Gippius AA, Khmelnitskiy RA, Dravin VA, Tkachenko SD (1999) Formation and characterization of graphitized layers in ion-implanted diamond. Diamond Relat Mater 8:1631–1634

    Article  Google Scholar 

  • Gippius AA, Khmelnitsky RA, Dravin VA, Khomich AV (2003) Diamond-graphite transformation by light ions implantation. Diamond Relat Mater 12:538–541

    Article  Google Scholar 

  • Hainschwang T, Respinger A, Notari F, Hartmann HJ, Günthard C (2009) A comparison of diamonds irradiated by high fluence neutrons or electrons, before and after annealing. Diamond Relat Mater 18:1223–1234

    Article  Google Scholar 

  • Han S, Frussin SG, Agher JW III, Pan LS, Kania DR, Lane SM, Wagner RS (1993) Radiation damage study of polycrystalline CVD and natural type IIA diamonds using Raman and photoluminescence spectroscopies. Nucl Instrum Methods B 80–81:1446–1450

    Article  Google Scholar 

  • Hanzawa H, Umemura N, Nisida Y, Kanda H, Okada M, Kobayashi M (1996) Disorder effects of nitrogen impurities, irradiation-induced defects, and 13C isotope composition on the Raman spectrum in synthetic Ib diamond. Phys Rev B 54:3793–3799

    Article  Google Scholar 

  • Hickey DP, Jones KS, Elliman RG (2009) Amorphization and graphitization of single-crystal diamond—a transmission electron microscopy study. Diamond Relat Mater 18:1353–1359

    Article  Google Scholar 

  • Huong PV (1991) Structural studies of diamond films and ultrahard materials by Raman and micro-Raman spectroscopies. Diamond Relat Mater 1:33–41

    Article  Google Scholar 

  • Iakoubovskii K, Adriaenssens GJ (2000) Optical study of some interstitial-related centres in CVD diamond. Phys Status Solidi A 181:59–64

    Article  Google Scholar 

  • Iakoubovskii K, Adriaenssens GJ, Dogadkin NN, Shiryaev AA (2001) Optical characterization of some irradiation-induced centers in diamond. Diamond Relat Mater 10:18–26

    Article  Google Scholar 

  • Jamieson DN, Prawer S, Nugent KW, Dooley SP (1995) Cross-sectional Raman microscopy of MeV implanted diamond. Nucl Instrum Meth B 106:641–645

    Article  Google Scholar 

  • Kagi H, Sato S, Akagi T, Kanda H (2007) Generation history of carbonado inferred from photoluminescence spectra, cathodoluminescence imaging, and carbon-isotopic composition. Am Mineral 92:217–224

    Article  Google Scholar 

  • Kalish R, Prawer S (1998) Ion implantation of diamond and diamond films. In: Prelas MA, Popovici G, Bigelow LK (eds) Handbook of industrial diamonds and diamond films. Marcel Decker, New York, pp 945–982

    Google Scholar 

  • Kalish R, Reznik A, Nugent KW, Prawer S (1999) The nature of damage in ion-implanted and annealed diamond. Nucl Instrum Meth B 148:626–633

    Article  Google Scholar 

  • Kanda H, Watanabe K (2006) Change of cathodoluminescence spectra of diamond with irradiation of low energy electron beam followed by annealing. Diamond Relat Mater 15:1882–1885

    Article  Google Scholar 

  • Khomich AV, Khmelnitskiy RA, Dravin VA, Gippius AA, Zaveedev EV, Vlasov II (2007) Radiation damage in diamonds subjected to helium implantation. Phys Solid State 49:1661–1665

    Article  Google Scholar 

  • Kiflawi I, Collins AT, Iakoubvskii K, Fisher D (2007) Electron irradiation and the formation of vacancy–interstitial pairs in diamond. J Phys Condens Mat 7:046216

    Article  Google Scholar 

  • Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393

    Article  Google Scholar 

  • Koivula JI (2000) The microworld of diamonds. Gemworld International, Inc., Northbrook, p 157

    Google Scholar 

  • Lee EH, Hembree DM Jr, Rao GR, Mansur LK (1993) Raman scattering from ion-implanted diamond, graphite, and polymers. Phys Rev B 48:15540–15551

    Article  Google Scholar 

  • Lind SC, Bardwell DC (1923) The coloring and thermophosphorescence produced in transparent minerals and gems by radium radiation. Am Mineral 8:171–180

    Google Scholar 

  • Martin J, Wannemacher R, Teichert J, Bischoff L, Köhler B (1999a) Generation and detection of fluorescent color centers in diamond with submicron resolution. Appl Phys Lett 75:3096–3098

    Article  Google Scholar 

  • Martin J, Grebner W, Sigle W, Wannemacher R (1999b) Confocal microscopy of color center distributions in diamond. J Luminesc 83–84:493–497

    Article  Google Scholar 

  • Mendelssohn MJ, Milledge HJ, Vance ER, Nave E, Woods PA (1979) Internal radioactive haloes in diamond. Diamond Res 1979 (DeBeers Indust Diam Div), pp 31–36

  • Meyer HOA, Milledge HJ, Nave E (1965) Natural irradiation damage in Ivory Coast diamonds. Nature 206:392

    Article  Google Scholar 

  • Mikhailov SN, Weber J, Baer Y, von Kaenel Y, Stiegler J, Blank E, Hänni W (1996) Damage and structural modification of CVD diamond films caused by α-particles. Nucl Instrum Method B 118:753–757

    Article  Google Scholar 

  • Nachalnaya TA, Andreyev VD, Gabrusenok EV (1994) Shift of the frequency and Stokes–anti-Stokes ratio of Raman spectra from diamond powders. Diamonds Relat Mater 3:1325–1328

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Andrut M, Wirth R, Blaum P (2001a) The nature of radiohaloes in biotite: experimental studies and modeling. Am Mineral 86:498–512

    Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001b) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petr 141:125–144

    Article  Google Scholar 

  • Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Miner Petrol 86:1–27

    Article  Google Scholar 

  • Nasdala L, Grötzschel R, Probst S, Bleisteiner B (2010) Irradiation damage in monazite (CePO4): an example to establish the limits of Raman confocality and depth resolution. Can Mineral 48:351–359

    Article  Google Scholar 

  • Nasdala L, Grambole D, Götze J, Kempe U, Váczi T (2011) Helium irradiation study on zircon. Contrib Mineral Petr 161:777–789

    Article  Google Scholar 

  • Nasdala L, Beyssac O, Schopf JW, Bleisteiner B (2012) Application of Raman-based images in the Earth sciences. In: Zoubir A (ed) Raman imaging: techniques and applications. Springer series in optical sciences, vol 168. Springer, Berlin, pp 145–187

    Google Scholar 

  • Orwa JO, Jamieson DN, Nugent KW, Prawer S, Kalish R (1997) Effects of damage on diffusion of implanted helium in diamond measured by nuclear elastic scattering. Nucl Instrum Method B 124:515–518

    Article  Google Scholar 

  • Park J-W, Kim H-J, Kim Y-C (2011) Optical properties of the black diamond produced by ion implantation. J Mater Res 26:1572–1576

    Article  Google Scholar 

  • Prawer S, Nugent KW, Jamieson DN (1998) The Raman spectrum of amorphous diamond. Diamond Relat Mater 7:106–110

    Article  Google Scholar 

  • Prins JF, Derry TE (2000) Radiation defects and their annealing behaviour in ion-implanted diamond. Nucl Instrum Method B 166–167:364–373

    Article  Google Scholar 

  • Prins JF, Derry TE, Sellschop JPF (1986) Volume expansion of diamond during ion implantation. Phys Rev B 34:8870–8874

    Article  Google Scholar 

  • Raineri V, Galvagno G, Rimini E, Biersack JP, Nakagawa ST, La Ferla A, Carnera A (1991) Channelling implants of B ions into <100> silicon surfaces. Radiat Eff Defect S 116:211–217

    Article  Google Scholar 

  • Rubanova EV, Palazhchenko OV, Garanin VK (2009) Diamonds from the V. Grib pipe, Arkhangelsk kimberlite province, Russia. Lithos 112S:880–885

    Article  Google Scholar 

  • Ruschel K, Nasdala L, Kronz A, Hanchar JM, Többens DM, Škoda R, Finger F, Möller A (2012) A Raman spectroscopic study on the structural disorder of monazite–(Ce). Mineral Petrol 105:41–55

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Mineral 29:240–253

    Article  Google Scholar 

  • Sharma SK, Mao HK, Bell PM, Xu JA (1985) Measurement of stress in diamond anvils with micro-Raman spectroscopy. J Raman Spectrosc 16:350–352

    Article  Google Scholar 

  • Shelkov DA, Verchovsky AB, Milledge HJ, Pillinger CT (1998) The radial distribution of implanted and trapped 4He in single diamond crystals and implications for the origin of carbonado. Chem Geol 149:109–116

    Article  Google Scholar 

  • Solin SA, Ramdas AK (1970) Raman spectrum of diamond. Phys Rev B 1:1687–1698

    Article  Google Scholar 

  • Spits RA, Prins JF, Derry TE (1994) A determination of the critical damage density required for “amorphisation” of ion-implanted diamond. Nucl Instrum Method B 85:347–351

    Article  Google Scholar 

  • Steeds JW, Davis TJ, Charles SJ, Hayes JM, Butler JE (1999) 3H luminescence in electron-irradiated diamond samples and its relationship to self-interstitials. Diamond Relat Mater 8:1847–1852

    Article  Google Scholar 

  • Steeds JW, Charles SJ, Davies J, Griffin I (2000) Photoluminescence microscopy of TEM irradiated diamond. Diamond Relat Mater 9:397–403

    Article  Google Scholar 

  • Surovtsev NV, Kupriyanov IN, Malinovsky VK, Gusev VA, Palyanov YN (1999) Effect of nitrogen impurities on the Raman line width in diamonds. J Phys Condens Matter 11:4767–4774

    Google Scholar 

  • Tkachev VD, Zaitsev AM, Tkachev VV (1985) Chemical activity of noble-gases in diamond. Phys Status Solidi B 129:129–133

    Article  Google Scholar 

  • Tomašić N, Gajović A, Bermanec V, Su D, Rajić Linarić M, Ntaflos T, Schlögl R (2006) Recrystallization mechanisms of fergusonite from metamict mineral precursors. Phys Chem Mineral 33:145–159

    Article  Google Scholar 

  • Ustinov VN, Zagainyi AK, Smith CB, Ushkov VV, Lazko EE, Lukyanova LI, Lobkova LP (2009) Early Proterozoic diamond-bearing kimberlites of Karelia and their formation peculiarities. Russ Geol Geophys 50:739–750

    Article  Google Scholar 

  • Uzan-Saguy C, Cytermann C, Brener R, Richter V, Shaanan M, Kalish R (1995) Damage threshold for ion-beam induced graphitization of diamond. Appl Phys Lett 67:1194–1196

    Article  Google Scholar 

  • Vance ER, Milledge HJ (1972) Natural and laboratory α-particle irradiation of diamond. Mineral Mag 38:878–881

    Article  Google Scholar 

  • Vance ER, Harris JW, Milledge HJ (1973) Possible origins of α-damage in diamonds from kimberlite and alluvial sources. Mineral Mag 39:349–360

    Article  Google Scholar 

  • Verchovsky AB, Ott U, Begemann F (1993) Implanted radiogenic and other noble gases in crustal diamonds from Northern Kazakhstan. Earth Planet Sci Lett 120:87–102

    Article  Google Scholar 

  • Walker J (1979) Optical absorption and luminescence in diamond. Rep Prog Phys 42:1650–1659

    Article  Google Scholar 

  • Wang W, Cheung CC, Gelb T (2006) Diamond with circular brown or green radiation stains. Gems Gemol 42:161–162

    Google Scholar 

  • Weikusat C, Miletich R, Glasmacher UA, Trautmann C, Neumann R (2010) Heavy ion irradiation on crystallographically oriented cordierite and the conversion of molecular CO2 to CO—a Raman spectroscopic study. Phys Chem Mineral 37:417–424

    Article  Google Scholar 

  • Yagiu H, Deguchi M, Won HJ, Mori Y, Hatta A, Kitabatake M, Ito T, Hirao T, Hiraki A (1995) Ion implantation in CVD diamond and plasma treatment effect. Diamond Relat Mater 4:575–579

    Article  Google Scholar 

  • Yoshikawa M, Mori Y, Maegawa M, Katagiri G, Ishida H, Ishitani A (1993) Raman scattering from diamond particles. Appl Phys Lett 62:3114–3116

    Article  Google Scholar 

  • Zaitsev AM (2001) Optical properties of diamond. Springer, New York, p 502

    Book  Google Scholar 

  • Zhao X-Z, Cherian KA, Roy R, White WB (1998) Downshift of Raman peak in diamond powders. J Mater Res 13:1974–1976

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. In: Ziegler JF (ed) The stopping and ranges of ions in matter, vol 1. Pergamon, New York

    Google Scholar 

  • Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM—the stopping and range of ions in matter. SRIM Co. (ISBN 0–9654207–1–X)

Download references

Acknowledgments

DeBeers Consolidated Mines Ltd. is thanked for making available diamond specimens for irradiation experiments. Diamond crystals from Thailand were kindly provided by Somruedee Satitkune. We are grateful to Andreas Wagner and Wolfgang Zirbs for technical assistance and to Robert Stark for providing access to his laboratory for AFM measurements. Rainer Grötzschel, Viton Heera, Adrian Jones, John I. Koivula, Matthias Posselt, and Heinz Surbeck are thanked for stimulating discussions. Constructive reviews of two anonymous experts are gratefully acknowledged. This research was supported financially by the European Commission through contract no. MEXC–CT–2005–024878 and Research Infrastructures Transnational Access (RITA) grant no. 025646, and the Austrian Science Fund (FWF) through grants P20028–N10 and P24448–N19, to L.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Nasdala.

Additional information

Communicated by J. Hoefs.

This article is dedicated to George Bosshart (1943–2012), who since the late 1980s had devoted most of his research activities to the study of processes causing natural and artificial green diamond colouration. His contributions to diamond research have stimulated also the investigation presented here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasdala, L., Grambole, D., Wildner, M. et al. Radio-colouration of diamond: a spectroscopic study. Contrib Mineral Petrol 165, 843–861 (2013). https://doi.org/10.1007/s00410-012-0838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0838-1

Keywords

Navigation