Brought to you by:
Paper The following article is Open access

Cool-down acceleration of G-M cryocoolers with thermal oscillations passively damped by helium

and

Published under licence by IOP Publishing Ltd
, , Citation R J Webber and J Delmas 2015 IOP Conf. Ser.: Mater. Sci. Eng. 101 012137 DOI 10.1088/1757-899X/101/1/012137

1757-899X/101/1/012137

Abstract

4 K Gifford-McMahon cryocoolers suffer from inherent temperature oscillations which can be a problem for certain attached electronic instrumentation. Sumitomo Heavy Industries has exploited the high volumetric specific heat of super-critical He to quell these oscillations (approx. 10 dB) by strongly thermally linking a separate vessel of He to the second stage; no significant thermal resistance is added between the payload and the working gas of the cryocooler. A noticeable effect of the helium damper is to increase the cool-down time of the second stage below 10 K. For the operation of niobium-based superconducting electronics (NbSCE), a common practice is to warm the circuits above the critical temperature (∼9 K) and then cool to the operating point in order to redistribute trapped magnetic fluxons, so for NbSCE users, the time to cool from 10 K is important. The gas in the helium damper is shared between a room-temperature buffer tank and the 2nd stage vessel, which are connected by a capillary tube. We show that the total cool-down time below 10 K can be substantially reduced by introducing a combination of thermal linkages between the cryocooler and the capillary tube and in-line relief valves, which control the He mass distribution between the warm canister and cold vessel. The time to reach operating temperature from the superconducting transition has been reduced to <25% of the time needed without these low-cost modifications.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/101/1/012137