Skip to main content
Log in

Dating recent peat deposits

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Dating recent peat deposits (i.e., past } 300 yrs of peat accumulation) has emerged as an important yet challenging task for estimating rates of organic matter accumulation and atmospheric pollutant deposition in peatlands. Due to their ombrotrophic nature and the tendency for Sphagnum-derived peat to have high cation exchange capacity, peatlands are ideal archives of atmospheric pollution. However, efforts to establish depth-age relationships in peats are complicated by the difficulty of dating deposits reliably. Assumptions underlying the techniques available for dating peat deposits often are poorly understood and generally untested. We outline the approaches used to establish depth-age relationships in peat chronologies, including brief descriptions of the theory, assumptions, methodology, and logistics of each technique. We include both continuous dating methods (i.e., methods based on 14C, 210Pb, constant bulk density, acidinsoluble ash, moss increment, pollen density) and chrono-stratigraphic markers (i.e., fallout isotopes from the Chernobyl accident and nuclear weapons testing, pollen stratigraphies, isothermal remanence magnetism, charcoal particles, spherical carbonaceous particles, PAHs, PCBs, DDT, toxaphene) that can be measured in peat and correlated temporally with known historical events. We also describe the relatively new radiocarbon application of wiggle matching and use hypothetical data to highlight the potential of this developing technique for dating recent peat. Until the uncertainty associated with each of these dating approaches is clarified, we recommend employing multiple techniques to allow for corroboration between different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aarkrog, A., H. Dahlgaard, E. Holm, and L. Hallstadius. 1984. Bismuth-207 in global fallout. Journal of Environmental Radioactivity 1:107–117.

    Article  CAS  Google Scholar 

  • Aitken, M. J. 1990. Science-Based Dating in Archaeology. Longman, London, UK.

    Google Scholar 

  • Allison, T. D., R. E. Moeller, and M. B. Davis. 1986. Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. Ecology 67:1101–1105.

    Article  Google Scholar 

  • Alm, J., K. Tolonen, and H. Vasander. 1993. Determination of recent apparent carbon accumulation in peat using dated fire horizons. Suo 43:191–194.

    Google Scholar 

  • Ament, A. and K. H. Lieser. 1993. Determination of 210Pb by liquid scintillation spectrometry in presence of various amounts of the daughter nuclides 210Bi and 210Po. Radiochimica Acta 60:21–23.

    CAS  Google Scholar 

  • Anderson, T. 1974. The chestnut pollen decline as a time horizon in lake sediments in eastern North America. Canadian Journal of Earth Sciences 11:678–685.

    Google Scholar 

  • Appleby, P. G. and F. R. Oldfield. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena (Supplement) 5:1–8.

    CAS  Google Scholar 

  • Appleby, P. G. and F. R. Oldfield. 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35.

    Article  CAS  Google Scholar 

  • Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. Anderson, and R. W. Battarbee. 1986. 210Pb-dating by low background gamma counting. Hydrobiologia 143:21–27.

    Article  CAS  Google Scholar 

  • Appleby, P. G., P. J. Nolan, F. Oldfield, N. Richardson, and S. R. Higgett. 1988. 210Pb-dating of lake sediments and ombrotrophic peats by gamma-assay. The Science of the Total Environment 69: 157–177.

    Article  CAS  Google Scholar 

  • Appleby, P. G., N. Richardson, P. J. Nolan, and F. Oldfield. 1990. Radiometric dating of the UK SWAP sites. Philosophical Transactions of the Royal Society of London B, Biological Sciences 327:233–238.

    Article  Google Scholar 

  • Appleby, P. G., N. Richardson, and P. J. Nolan. 1991. 241Am dating of lake sediments. Hydrobiologia 241:35–42.

    Article  Google Scholar 

  • Appleby, P. G., W. Shotyk, and A. Fankhauser. 1997. Lead-210 age dating of three peat cores in the Jura Mountains, Switzerland. Water, Air, and Soil Pollution 100:223–231.

    Article  CAS  Google Scholar 

  • Arnold, J. R. and W. F. Libby. 1949. Age determinations by radiocarbon content: checks with samples of known age. Science 110: 678–680.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, L. D. 1995. Conventional radiocarbon dating. p. 107–115. In N. Rutter and N. Catto (eds.) Dating Methods of Quaternary Deposits. Geological Association of Canada, St. Johns, New-foundland, Canada.

    Google Scholar 

  • Bard, E., G. Raisbeck, F. Yiou, and J. Jouzel. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters 150:453–462.

    Article  CAS  Google Scholar 

  • Bard, E., G. Raisbeck, F. Yiou, and J. Jouzel. 2000. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B:985–992.

    CAS  Google Scholar 

  • Barnekow, L., G. Possnert, and P. Sandgren. 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden—a comparison between dated bulk sediment and macrofossil samples. GFF-Upsala 120:59–68.

    CAS  Google Scholar 

  • Bazzaz, F. A. 1974. Ecophysiology of Ambrosia artemisifolia: a successful dominant. Ecology 55:112–119.

    Article  Google Scholar 

  • Beckwith, P. R., J. B. Ellis, R. M. Revitt, and F. Oldfield. 1986. Heavy metal and magnetic relationships for urban source sediments. Physics of the Earth and Planetary Interiors 42:67–75.

    Article  CAS  Google Scholar 

  • Belyea, L. R. and B. G. Warner. 1994a. Dating of the near-surface layer of a peatland in northeastern Ontario, Canada. Boreas 23: 259–269.

    Google Scholar 

  • Belyea, L. R. and B. G. Warner. 1994b. Temporal scale and the accumulation of peat in a Sphagnum bog. Canadian Journal of Botany 74:366–377.

    Article  Google Scholar 

  • Bennett, K. D. 1986. Competitive interactions among forest tree populations in Norfolk, England, during the last 10,000 years. New Phytologist 103:603–620.

    Article  Google Scholar 

  • Benninger, L. K., D. M. Lewis, and K. K. Turekian. 1975. The use of natural Pb-210 as a heavy metal tracer in the river-estuarine system. p. 202–210. In T. M. Church (ed.) Marine Chemistry in the Coastal Environment. American Chemical Society, Series 18, New York, NY, USA.

  • Benninghoff, W. S. 1962. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et Spores 4:332–333.

    Google Scholar 

  • Berglund, B. E. (ed.). 1986. Handbook of Holocene Palaeoecology and Paleohydrology. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Berglund, B. E. and M. Ralska-Jasiewiczowa. 1986. Pollen analysis and pollen diagrams. p. 455–484. In B. E. Berglund (ed.) Handbook of Holocene Paleoecology and Paleohydrology. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Bevingston, P. R. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York, NY, USA.

    Google Scholar 

  • Bignert, A., M. Olsson, W. Persson, S. Jensen, S. Zakrisson, K. Litzen, U. Eriksson, L. Haeggberg, and T. Alsberg. 1998. Temporal trends of organochlorines in Northern Europe, 1967–1995. Relation to global fractionation, leakage from sediments and international measures. Environmental Pollution 99:177–198.

    Article  PubMed  CAS  Google Scholar 

  • Binford, M. W. 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project cores. Journal of Paleolimnology 3:253–267.

    Article  Google Scholar 

  • Birks, H. J. B. and H. H. Birks. 1980. Quaternary Paleoecology. Edward Arnold, London, England.

    Google Scholar 

  • Björck, S. and B. Wohlfarth. 2001. 14C chronostratigraphic techniques in paleolimnology. p. 205–245. In W. M. Last and J. P. Smol (eds.) Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Blais, J. S. and W. D. Marshall. 1988. Determination of 210Pb in admixture with 210Bi and 210Po in quenched samples by liquid scintillation counting. Analytical Chemistry 60:1851–1856.

    Article  CAS  Google Scholar 

  • Bowman, S. 1990. Interpreting the Past: Radiocarbon Dating. British Museum Publications, London, England.

    Google Scholar 

  • Boyd, W. E. 1986. The role of mosses in modern pollen analysis: the influence of moss morphology on pollen entrapment. Pollen et Spores 28:243–256.

    Google Scholar 

  • Bracewell, J. M., A. Hepburn, and C. Thompson. 1993. Levels and distribution of polychlorinated biphenyls on the Scottish land mass. Chemosphere 27:1657–1667.

    Article  CAS  Google Scholar 

  • Brännvall, M.-L., R. Bindler, O. Emteryd, M. Nilsson, and I. Renberg. 1997. Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water, Air, and Soil Pollution 100:243–252.

    Article  Google Scholar 

  • Braziunas, T. F., I. E. Fung, and M. Stuiver. 1995. The pre-industrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biochemical Cycles 9:565–584.

    Article  CAS  Google Scholar 

  • Bridgham, S. D., K. Updegraff, and J. Pastor. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561.

    Google Scholar 

  • Bronk Ramsey, C. 1994. Analysis of chronological information and radiocarbon calibration: the program OxCal. Archaeological Computing Newsletter 41:11–16.

    Google Scholar 

  • Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425–430.

    CAS  Google Scholar 

  • Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43:355–363.

    Google Scholar 

  • Bronk Ramsey, C., J. van der Plicht, and B. Weninger. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43:381–389.

    Google Scholar 

  • Brown, J. 1969. Buried soils associated with permafrost. p. 115–127. In S. Pawluk (ed.) Pedology and Quaternary Research. The National Research Council of Canada and the University of Alberta, Edmonton, Alberta, Canada.

    Google Scholar 

  • Brugam, R. B. 1978. Pollen indicators of land-use change in southern Connecticut. Quaternary Research 9:349–362.

    Article  Google Scholar 

  • Brush, G. S., E. A. Martin, R. S. DeFries, and C. A. Rice. 1982. Comparisons of 210Pb and pollen methods for determining rates of estuarine sediment accumulation. Quaternary Research 18:196–217.

    Article  Google Scholar 

  • Buck, C. E., W. G. Cavanagh, and C. D. Litton. 1996. Bayesian approach to interpreting archaeological data. John Wiley and Son, Chichester, UK.

    Google Scholar 

  • Buck, C. E., J. A Christen, and G. N. James. 1999. BCal: an online Bayesian radiocarbon calibration tool. Internet Archaeology 7.http://intarch.ac.uk/journal/issue7/buck_index.html.

  • Buck, C. E., J. B. Kenworthy, C. D Litton, and A. F. M Smith. 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration. Antiquity 65:808–821.

    Google Scholar 

  • Buck, C. E., C. D. Litton, and E. M. Scott. 1994. Making, the most of radiocarbon dating: some statistical considerations. Antiquity 68:252–263.

    Google Scholar 

  • Buck, C. E., C. D. Litton, and A. F. M. Smith. 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19:497–512.

    Article  Google Scholar 

  • Burleigh, R., K. Matthews and M. Leese. 1984. Consensus δ13C values. Radiocarbon 26:7–45.

    Google Scholar 

  • Chaddha, G. and M. S. Seehra. 1983. Magnetic components and particle size distribution of coal fly ash. Journal of Physics D: Applied Physics 16:1767–1776.

    Article  CAS  Google Scholar 

  • Charman, D. J., R. Aravena, and B. G. Warner. 1994. Carbon dynamics in a forested peatland in north-eastern Ontario. Canada. Journal of Ecology 82:55–62.

    Article  Google Scholar 

  • Christen, J. A. 2003. Bwigg: an internet facility for Bayesian radiocarbon wiggle-matching. Internet Archaeology 13. http://intarch.ac.uk/journal/issue13/christen_index.html.

  • Christen, J. A. and C. D. Litton. 1995. A Bayesian approach to wiggle-matching. Journal of Archaeological Science 22:719–725.

    Article  Google Scholar 

  • Clark, J. S. 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research 30:67–80.

    Article  Google Scholar 

  • Clark, J. S. and W. A. Patterson. 1984. Pollen, 210Pb, and opaque spherules: an integrated approach to dating and sedimentation in the intertidal environment. Journal of Sedimentary Petrology 54: 1249–1263.

    Google Scholar 

  • Clark, R. L. 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et Spores 24:523–536.

    Google Scholar 

  • Clark, R. M. and C. Renfrew. 1972. A statistical approach to the calibration of floating tree-ring chronologies using radiocarbon dates. Archaeometry 14:5–19.

    Article  CAS  Google Scholar 

  • Clymo, R. S. 1965. Experiments on breakdown of Sphagnum in two bogs. Journal of Ecology 53:747–757.

    Article  Google Scholar 

  • Clymo, R. S. 1970. The growth of Sphagnum: methods of measurement. Journal of Ecology 58:13–49.

    Article  Google Scholar 

  • Clymo, R. S. 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society of London B 303:605–654.

    Article  Google Scholar 

  • Clymo, R. S. 1992. Models of peat growth. Suo 43:127–136.

    Google Scholar 

  • Clymo, R. s. and P. M. Hayward. 1982. The ecology of Sphagnum. p. 229–289. In A. J. E. Smith (ed.) Ecology of Bryophytes. Chapman and Hall, London, England.

    Google Scholar 

  • Clymo, R. S. and D. Mackay. 1987. Upwash and downwash of pollen and spores in the unsaturated surface layer of Sphagnum-dominated peat. New Phytologist 105:175–183.

    Article  Google Scholar 

  • Clymo, R. S., F. Oldfield, P. G. Appleby, G. W. Pearson, P. Ratnessar, and N. Richardson. 1990. A record of atmospheric deposition in a rain-dependent peatland. Philosophical Transactions of the Royal Society of London B 327:331–338.

    Article  Google Scholar 

  • Clymo, R. S., J. Turunen, and K. Tolonen. 1998. Carbon accumulation in peatland. Oikos 81:368–388.

    Article  Google Scholar 

  • Cohen, A. D., C. P. Gage, W. S. Moore, and R. S. VanPelt. 1999. Combining organic petrography and palynology to assess anthropogenic impacts on peatlands. Part 2. An example from a Carolina Bay wetland at the Savannah River Site in South Carolina. International Journal of Coal Geology 39:47–95.

    Article  CAS  Google Scholar 

  • Cole, K. L., D. R. Engstrom, R. P. Futyma, and R. Stottlemyer. 1990. Past atmospheric deposition of metals in Northern Indiana measured in a peat core from Cowles Bog. Environmental Science and Technology 24:543–549.

    Article  CAS  Google Scholar 

  • Colgan, P. A., P. McCann, E. J. McGee, and I. R. McAulay, 1993. Short-and long-term losses of 137Cs from peatland soils. Irish Journal of Agricultural and Food Research 32:37–46.

    CAS  Google Scholar 

  • Conway, V. M. 1947. Ringinglow Bog, near Sheffield. Journal of Ecology 34:149–181.

    Article  Google Scholar 

  • Cook, G. T., D. d. Harkness, A. B. MacKenzie, B. F. Miller, and E. M. Scott (eds.). 1996. Liquid Scintillation Spectrometry, 1994. Radiocarbon Publishers, Tucson, AZ, USA.

    Google Scholar 

  • Craft, C. B. and C. J. Richardson. 1998. Recent and long-term organic soil accretion and nutrient retention in the Everglades. Soil Science Society of America Journal 62:834–843.

    Article  CAS  Google Scholar 

  • Cranwell, P. A. and V. K. Koul. 1989. Sedimentary record of polycyclic aromatic and aliphatic hydrocarbons in the Windermere catchment. Water Research 23:275–283.

    Article  CAS  Google Scholar 

  • Cwynar, L. C. 1978. Recent history of fire and vegetation from laminated sediment of Greenleaf Lake, Algonquin Park, Ontario. Canadian Journal of Botany 56:10–21.

    Article  Google Scholar 

  • Damman, A. W. H. 1978. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495.

    Article  CAS  Google Scholar 

  • Damon, P. E., G. Burr, A. N. Peristykh, G. C. Jacoby, and R. D. D’Arrigo. 1996. Regional radiocarbon effect due to thawing of frozen earth. Radiocarbon 38:597–602.

    CAS  Google Scholar 

  • Damon, P. E., C. W. Ferguson, A. Long, and E. I. Wallick. 1974. Dendrochronologic calibration of the radiocarbon timescale. American Antiquity 39:350–366.

    Article  Google Scholar 

  • Damon, P. E., J. C. Lerman, and A. Long. 1978. Temporal functions of 14C: causal factors and implications. Annual Review of Earth and Planetary Science 6:457–494.

    Article  CAS  Google Scholar 

  • Davis, M. B., L. B. Brubaker, and J. M. Beiswinger. 1971. Pollen grains in lake sediments: pollen percentages in surface sediments from southern Michigan. Quaternary Research 1:450–467.

    Article  Google Scholar 

  • Davis, R. B. 1967. Pollen studies of near surface sediments in Maine Lakes. p. 143–173. In E. J. Cushing and H. E. Wright (eds.) Quaternary Paleoecology. Yale University Press. New Haven, CT, USA.

    Google Scholar 

  • Day, S. P. and P. A. Mellars. 1994. ‘Absolute’ dating of Mesolithic human activity at Star Carr, Yorkshire: new palaeoecological studies and identification of the 9600 BP radiocarbon ‘plateau’. Proceedings of the Prehistoric Society 60:417–422.

    Google Scholar 

  • de Jong, A. F. M., W. G. Mook, and B. Becker. 1979. Confirmation of the Suess wiggles: 3200-700 BC. Nature 280:48–49.

    Article  Google Scholar 

  • Dekling, H. and J. van der Plicht. 1993. Statistical problems in calibrating radiocarbon dates. Radiocarbon 35:239–244.

    Google Scholar 

  • Délibrias, G. 1989. Carbon-14. p. 399–436. In E. Roth and B. Poty (eds.) Nuclear Methods of Dating. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • de Vries, H. 1958. Variation in the concentration of radiocarbon with time and location on Earth. Koninklijke Nederlandse Akademie van Wetenschappen (Series B) 61:94–102.

    Google Scholar 

  • Dickinson, W. 1975. Recurrence surfaces in Rusland Moss, Cumbria (formerly North Lancashire). Journal of Ecology 63:913–935.

    Article  Google Scholar 

  • Dugmore, A. J., G. Larsen, and A. J. Newton. 1995. Seven tephra ischrones in Scotland. The Holocene 5:257–266.

    Article  Google Scholar 

  • Dugmore, A. J., A. J. Newton, K. J. Edwars, G. Larsen, J. J. Blackford, and G. T. Cook. 1996. Long-distance marker horizons from small-scale eruptions: British tephra deposits from the AD 1510 eruption of Hekla, Iceland. Journal of Quaternary Science 11:511–516.

    Article  Google Scholar 

  • Duplessy, J. C. and M. Arnold. 1989. Radiocarbon dating by accelerator mass spectrometry. p. 437–453. In E. Roth and B. Poty (eds.) Nuclear Methods of Dating. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Dupont, L. 1986. Temperature and rainfall variation in the Holocene based on comparative palaeoecology and isotope geology of a hummock and hollow, Bourtangerveen, The Netherlands. Review of Palaeobotany and Palynology 48:71–160.

    Article  Google Scholar 

  • Edwards, K. J. and K. M. Rowntree. 1980. Radiocarbon and palaeoenvironmental evidence for changing rates of erosion at a Flandrian stage site in Scotland. p. 207–223. In R. A. Cullingford, D. A. Davidson, and J. Lewin, Timescales in Geomorphology. Wiley, Chichester, UK.

    Google Scholar 

  • Efremova, T. T. and S. P. Efremov. 1994. Peat fires as an ecological factor in the development of forest-bog ecosystems. Russian Journal of Ecology 25:330–335.

    Google Scholar 

  • El-Daoushy, F., K. Tolonen, and R. Rosenberg. 1982. Lead 210 and moss-increment dating of two Finnish Sphagnum hummocks. Nature 296:429–431.

    Article  CAS  Google Scholar 

  • Elmore, D. E. and F. M. Phillips. 1987. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science 236: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Engelkemeir, A., W. H. Hamill, M. G. Inghram, and W. F. Libby. 1949. The half-life of radiocarbon (C14). Physical Review 75: 1825–1833.

    Article  CAS  Google Scholar 

  • Engstrom, D. and E. Swain. 1986. The chemistry of lakes in time and space. Hydrobiologia 43:37–44.

    Article  Google Scholar 

  • Environment Canada. 1991. The State of Canada’s Environment — 1991. D.W. Friesen and Sons, Ltd., Altona, Manitoba, Canada.

    Google Scholar 

  • Espi, E., C. F. Boutron, S. Hong, M. Pourchet, C. Ferrari, W. Shotyk, and L. Charlet. 1997. Changing concentrations of Cu, Zn, Cd, and Pb in a high altitude peat bog from Bolivia during the past three centuries. Water, Air, and Soil Pollution 100:289–296.

    Article  CAS  Google Scholar 

  • Eustis, D. S. and K. Tolonen 1990. A comparison of ash dating and moss-increment dating in Sphagnum hummocks. Suo 41:33–41.

    Google Scholar 

  • Faegri, K. and J. Iversen. 1975. Textbook of Pollen Analysis, 3rd revised edition. Hafner Press, New York, NY, USA.

    Google Scholar 

  • Faegri, K. and J. Iversen. 1989. Appendix A. p. 69–89. In K. Faegri, P. E. Kaland, and K. Krzywinski (eds.) Textbook of Pollen Analysis, 4th ed. Blackwell Scientific Publications, New York, NY, USA.

    Google Scholar 

  • Farmer, J. G., A. B. MacKenzie, C. L. Sugden, P. J. Edgar, and L. J. Eades. 1997. A comparison of the historical lead pollution records in peat and freshwater lake sediments from central Scotland. Water, Air, and Soil Pollution 100:253–270.

    Article  CAS  Google Scholar 

  • Ferguson, C. W., B. Huber, and H. E. Suess. 1966. Determination of the age of Swiss lake dwellings as an example of dendrochronologically-calibrated radiocarbon dating. Zeitscrift für Naturforschung 21A:1173–1177.

    Google Scholar 

  • Foreman, W. T., B. F. Connor, E. T. Furlong, D. G. Vaught, and L. M. Merten. 1994. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory. Determination of organochlorine insecticides and polychlorinated biphenyls in bottom sediment. U.S. Geological Survey Open-File Report No. 94–140.

  • Foster, D. R. and T. M. Zebryk. 1993. Long-term vegetation dynamics and disturbance history of a Tsuga-dominated forest in New England. Ecology 74:982–998.

    Article  Google Scholar 

  • Frolking S., J. L. Bubier, T. R. Moore, T. Ball, L. M. Bellisario, A. Bhardwaj, P. Carroll, P. M. Crill, P. M. Lafleur, J. H. McCaughey, N. T. Roulet, A. E. Suyker, S. B. Verma, J. M. Waddington, and G. J. Whiting. 1998. The relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochemical Cycles 12:115–126.

    Article  CAS  Google Scholar 

  • Gajewski, K., M. G. Winkler, and A. M. Swain. 1985. Vegetation and fire history from 3 lakes with varved sediments in Northwestern Wisconsin, USA. Review of Palaeobotany and Palynology 44:277–292.

    Article  Google Scholar 

  • Gerdol, R., S. Degetto, D. Mazzotta, and G. Vecchiati. 1994. The vertical distribution of the Cs-137 derived from Chernobyl fallout in the uppermost Sphagnum layer of two peatlands in the southern Alps (Italy). Water, Air, and Soil Pollution 75:93–106.

    Article  CAS  Google Scholar 

  • Geyh, M. A., W. E. Krumbein, and H. R. Kudrass. 1974. Unreliable 14C dating of long-stored deep-sea sediments due to bacterial activity. Marine Geology 17:M45-M50.

    Article  CAS  Google Scholar 

  • Gilbertson, D. D., J. P. Grattan, M. Cressey, and F. B. Pyatt. 1997. An air-pollution history of metallurgical innovation in iron- and steel-making: a geochemical archive of Sheffield. Water, Air, and Soil Pollution 100:327–341.

    Article  CAS  Google Scholar 

  • Godwin, H. 1962. Radiocarbon dating. Nature 195:943–945.

    Article  Google Scholar 

  • Gogrewe, D., M. Putz, R. Weber, K. Siemon, R. A. Esterlund, and P. Patzelt. 1996. Determination of 210Pb via 210Bi using a hydride generation technique combined with beta spectrometry. Radiochimica Acta 73:105–110.

    CAS  Google Scholar 

  • Goh, K. M. 1991a. Carbon dating. p. 125–145. In D. C. Coleman and B. Fry (eds.) Carbon Isotope Techniques. Academic Press, Inc., San Diego, CA, USA.

    Google Scholar 

  • Goldberg, E. D. 1963. Geochronology with 210Pb. p. 121–131. In Radioactive Dating. IAEA STI/PUB 68. International Atomic Energy Agency, Vienna Austria.

    Google Scholar 

  • Goodsite, M. E., W. Rom, J. Heinemeier, T. Lange, S. Ooi, P. G. Appleby, W. Shotyk, W. O. Van Der Knapp, C. Lohse, and T. S. Hansen. 2001. High-resolution AMS 14C dating of post-bomb peat archives of atmospheric pollutants. Radiocarbon 43:495–515.

    CAS  Google Scholar 

  • Gore, A. J. P. (ed.). 1983 Mires: Swamp, Bog, Fen and Moor—Ecosystems of the World 4A and B. Elsevier Scientific Publishing Company. Amsterdam, The Netherlands.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to global warming. Ecological Application 1:182–195.

    Article  Google Scholar 

  • Gorham, E. 1994. The future of research in Canadian peatlands: a brief survey with particular reference to global change. Wetlands 14:206–215.

    Article  Google Scholar 

  • Gorham, E. 1995. The biogeochemistry of northern peatlands and its possible responses to global warming. p. 169–187. In G. M. Woodwell and F. T. Mackenzie (eds.) Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Görres, M. and B. Frenzel. 1997. Ash and metal concentrations in peat bogs and indicators of anthropogenic activity. Water, Air, and Soil Pollution 100:355–365.

    Article  Google Scholar 

  • Gottdang, A., M. Klein, and D. J. W. Mous. 2001. Accelerator mass spectrometry at High Voltage Engineering Europa (HVEE). Radiocarbon 43:149–156.

    Google Scholar 

  • Gove, H. E. 1992. The history of AMS, its advantages over decay counting: applications and prospects. p. 214–229. In R. E. Taylor, A. Long, and R. S. Kra (eds.) Radiocarbon after Four Decades: an Interdisciplinary Perspective. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Griffin, J. J. and E. D. Goldberg. 1979. Morphologies and origin of elemental carbon in the environment. Science 206:563–565.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. J. and E. D. Goldberg. 1981. Sphericity as a characteristic of solids from fossil fuel burning in a Lake Michigan sediment. Geochimica et Cosmochimica Acta 45:763–769.

    Article  CAS  Google Scholar 

  • Grimm, E. C. 1988. Data analysis and display. p. 43–76. In B. Huntley and T. Webb III (eds.) Vegetation History. Kluwer Academic Publishers. Dordrecht, The Netherlands.

    Google Scholar 

  • Gulliksen, S., H. H. Birks, G. Possnert, and J. Mangerud. 1998. A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway. The Holocene 8:249–259.

    Article  Google Scholar 

  • Hammond, A. P., K. M. Goh, P. J. Tonkin, and M. R. Manning. 1991. Chemical pretreatments for improving the radiocarbon-dates of peats and organic silts in a gley podzol environment—Grahams Terrace, North Westland. New Zealand Journal of Geology and Geophysics 34:191–194.

    CAS  Google Scholar 

  • Harris, S. A. and I. H. Schmidt. 1994. Permafrost aggradation and peat accumulation since 1200 years B.P. in peat plateaus at Tuchitua, Yukon Territory (Canada). Journal of Paleolimnology 12:3–17.

    Article  Google Scholar 

  • Hedges, R. E. M. 1981. Radiocarbon dating with an accelerator: review and preview. Archaeometry 23:3–18.

    Article  CAS  Google Scholar 

  • Hedges, R. E. M. 1992. Sample treatment strategies in radiocarbon dating. p. 165–183. In R. E. Taylor, A. Long, and R. S. Kra (eds.) Radiocarbon after Four Decades: an Interdisciplinary Perspective. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Hedges, R. E. M. and J. A. J. Gowlett. 1986. Radiocarbon dating by accelerator mass spectrometry. Scientific American 254:100–107.

    Article  CAS  Google Scholar 

  • Himberg, K. K. and P. Pakarinen. 1994. Atmospheric PCB deposition in Finland during 1970s and 1980s on the basis of concentrations in ombrotrophic peat mosses (Sphagnum). Chemosphere 29:431–440.

    Article  CAS  Google Scholar 

  • Hird, A. D., D. L. Rimmer, and F. R. Livens. 1996. Factors affecting the sorption and fixation of caesium in acid organic soils. European Journal of Soil Science 47:97–104.

    Article  CAS  Google Scholar 

  • Hölzer, A. and A. Hölzer. 1998. Silicon and titanium in peat profiles as indicators of human impact. The Holocene 8:685–696.

    Article  Google Scholar 

  • Hua, Q., M. Barbetti, U. Zoppi, D. Fink, and G. Jacobsen. 2002. Atmospheric radiocarbon offset for the tropics during the Little Ice Age. Abstract and oral presentation for the 9th International Conference on Accelerator Mass Spectrometry, 9–13 September 2002 in Nagoya, Japan.

  • Hua, Q., M. Barbetti, U. Zoppi, D. M. Chapman, and B. Thomson. 2003. Bomb radiocarbon in tree-rings from northern New South Wales, Australia: implications for dendrochronology, atmospheric transport and air-sea exchange of CO2. Radiocarbon 45:431–447.

    CAS  Google Scholar 

  • Hughen, K. A., J. R. Southon, S. J. Lehman, and J. T. Overpeck. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:1951–1954.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen, P. 1980. Early land uses, especially the slash-and-burn cultivation in the commune of Lammi, southern Finland, interpreted mainly using pollen and charcoal analysis. Acta Botanici Fennici 113:1–45.

    Google Scholar 

  • Ilkonen, L. 1995. Rate of carbon accumulation in a raised bog, southwestern Finland. Geological Survey of Finland, Special Paper, 20, 135–137.

    Google Scholar 

  • Ilomets, M. 1980. The determination of the age of peat layers based on the peat bulk density method. Proceedings of the Academy of Sciences of the ESSR 29 Geology 3:121.

    Google Scholar 

  • Irwin, T. E. 1989. Pollen percentage, concentration and influx to a mire hummock and hollow. Pollen et Spores 31:317–328.

    Google Scholar 

  • Jackson, S. T. and M. E. Lyford. 1999. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Botanical Reviews 65:39–75.

    Article  Google Scholar 

  • Jacobson, G. L. 1988. Ancient permanent plots: sampling in paleovegetational studies. p. 3–16. In B. Huntley and T. Webb III (eds.) Vegetation History. Kluwer Academic Publishers. Dordrecht, The Netherlands.

    Google Scholar 

  • Jacobson, G. L. and R. H. W. Bradshaw. 1981. The selection of sites for paleovegetational studies. Quaternary Research 16:80–96.

    Article  Google Scholar 

  • Jansonius, J. and D. C. McGregor. 1996. Introduction. p. 1–10. In J. Jansonius and D. C. McGregor (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Volume 1. Publishers Press, Salt Lake City, UT, USA.

    Google Scholar 

  • Janssens C. R. 1967. A postglacial pollen diagram from a small Typha swamp in northwestern Minnesota, interpreted from pollen indicators and surface samples. Ecological Monographs 37:145–172.

    Article  Google Scholar 

  • Janssens, C. R. 1973. Local and regional pollen deposition. p. 31–42. In H. J. B. Birks and R. G. West (eds.) Quaternary Plant Ecology. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Jarzen, D. M. and D. J. Nichols. 1996. Pollen. p. 261–292. In J. Jansonius and D. C. McGregor (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Volume 1. Publishers Press, Salt Lake City, UT, USA.

    Google Scholar 

  • Johnson, L. C. and A. W. H. Damman. 1991. Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos 61:234–242.

    Article  Google Scholar 

  • Jones, K. C., G. Sanders, S. R. Wild, V. Burnett, and A. E. Johnston. 1992. Evidence for a decline of PCBs and PAHs in rural vegetation and air in the United Kingdom. Nature 356:137–139.

    Article  CAS  Google Scholar 

  • Jones, M. and G. Nicholls. 2002. New radiocarbon calibration software. Radiocarbon 44:663–674.

    Google Scholar 

  • Joshi, S. R. and R. McNeely. 1988. Detection of fallout 155Eu and 207Bi in a 210Pb-dated lake sediment core. Journal of Radioanalytical Nuclear Chemistry 122:183–191.

    Article  CAS  Google Scholar 

  • Joshi, S. R. 1989. Common analytical errors in the radiodating of recent sediments. Environmental Geology and Water Sciences 14: 203–207.

    Article  CAS  Google Scholar 

  • Jungner H., E. Sonninen, G. Possnert, and K. Tolonen. 1995. Use of bomb-produced C-14 to evaluate the amount of CO2 emanating from 2 peat bogs in Finland. Radiocarbon 37:567–573.

    CAS  Google Scholar 

  • Kemp A., J. Williams, R. Rhodes, and M. Gregory. 1978. Impact of man’s activity on the chemical composition of the sediments of Lakes Superior and Huron. Water, Air, and Soil Pollution 10: 381–402.

    Article  CAS  Google Scholar 

  • Kerby, N. W. and J. A. Raven. 1985. Transport and fixation of inorganic carbon by marine algae. Advances in Botanical Research 11:71–123.

    Article  CAS  Google Scholar 

  • Kilian, M. R., J. van der Plicht, and B. van Geel. 1995. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14:959–966.

    Article  Google Scholar 

  • Kilian, M. R., B. van Gell, and J. Van der Plicht. 2000. C14 AMS wiggle-matching of raised bog deposits and models of peat accumulation. Quaternary Science Review 19:1011–1033.

    Article  Google Scholar 

  • Kim, G., N. Hussain, T. M. Church, and W. L. Carey. 1997. The fallout isotope 207Bi in a Delaware salt marsh: a comparison with 210Pb and 137Cs as a geochronological tool. The Science of the Total Environment 196:31–41.

    Article  CAS  Google Scholar 

  • Kirner, D. L., R. E. Taylor, and J. R. Southon. 1995. Reduction in backgrounds of microsamples for AMS 14C dating. Radiocarbon 37:697–704.

    CAS  Google Scholar 

  • Knox, F. B. and B. G. McFadgen. 2001. Least-squares fitting smooth curves to decadal radiocarbon calibration data from AD1145 to AD1945. Radiocarbon 43:87–118.

    Google Scholar 

  • Koff, R., J.-M. Punning, and M. Yli-Halla. 1998. Human impact on a paludified landscape in northern Estonia. Landscape and Urban Planning 41:263–272.

    Article  Google Scholar 

  • Kothari, B. K. and M. Wahlen. 1984. Concentration and surface morphology of charcoal particles in sediments of Green Lake, N.Y.: implications regarding the use of energy in the past. Northeastern Environmental Science 3:24–29.

    CAS  Google Scholar 

  • Krishnaswami, S. and D. Lal. 1978. Radionuclide Limnochronology. p. 153–177. In A. Lerman (ed.) Lakes, Chemistry, Geology, and Physics. Springer Verlag, New York, NY, USA.

    Google Scholar 

  • Kromer, B., S. W. Manning, P. I. Kuniholm, M. W. Newton, M. Spurk, and I. Levin. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294:2529–2532.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, B. and K.-O. Münnich. 1992. CO2 gas proportional counting in radiocarbon dating—review and perspective. p. 184–197. In R. E. Taylor, A. Long, and R. S. Kra (eds.) Radiocarbon after Four Decades: an Interdisciplinary Perspective. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Kromer, B., M. Spurk, S. Remmele, M. Barbetti, and V. Toniello. 1998. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring series. Radiocarbon 40:351–358.

    CAS  Google Scholar 

  • Kudelsky, A. V., J. T. Smith, S. V. Ovsiannikova, and J. Hilton. 1996. Mobility of Chernobyl-derived 137Cs in a peatbog system within the catchment of the Pripyat River, Belarus. The Science of the Total Environment 188:101–113.

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen, E. 1996. General review on world peatland and peat resources. p. 53–56. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society, Jyväskylä, Finland.

    Google Scholar 

  • Lee, J. A. and J. H. Tallis. 1973. Regional and historical aspects of lead pollution in Britain. Nature 245:216–218.

    Article  PubMed  CAS  Google Scholar 

  • Levin, I., R. Bösinger, G. Bonani, R. J. Francey, B. Kromer, K. O. Münnich, M. Suter, N. B. A. Trivett, and W. Wölfli. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. p. 503–518. In R. E. Taylor, A. Long, and R. S. Kra (eds.) Radiocarbon after Four Decades: an Interdisciplinary Perspective. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Levin, I. and V. Hesshaimer. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80.

    CAS  Google Scholar 

  • Levin, I. and B. Kromer. 1997a. Twenty years of atmospheric 14CO2 observation at Schauinsland Station, Germany. Radiocarbon 39: 205–218.

    CAS  Google Scholar 

  • Levin, I. and B. Kromer. 1997b. Δ14CO2 records from Schauinsland. In Trends: a Compendium of Data on Global Change. Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA.

    Google Scholar 

  • Levin, I., B. Kromer, H. Schoch-Fischer, M. Bruns, K. O. Münnich, D. Berdau, J. C. Vogel, and K. O. Münnich. 1994. Δ14CO2 records from Vermunt. In Trends: a Compendium of Data on Global Change. Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    Google Scholar 

  • Levin, I., J. Schuchard, B. Kromer, and K. O. Münnich. 1989. The continental European Suess effect. Radiocarbon 31:431–440.

    Google Scholar 

  • Libby, W. F. 1955. Radiocarbon Dating, 2nd ed. University of Chicago Press, Chicago, IL, USA.

    Google Scholar 

  • Libby, W. F. 1963. Accuracy of radiocarbon dates. Antiquity 37:7–12.

    Google Scholar 

  • Libby, W. F. 1979. Radiocarbon dating in the future; thirty years after inception. Environment International 2:205–207.

    Article  Google Scholar 

  • Livens, F. R., M. T. Howe, J. D. Hemingways, K. W. T. Goulding, and B. J. Howard. 1996. Forms and rates of release of 137Cs in two peat soils. European Journal of Soil Science 47:105–112.

    Article  CAS  Google Scholar 

  • Livett, E. A. 1988. Geochemical monitoring of atmospheric heavy metal pollution: theory and application. Advances in Ecological Research 18:65–177.

    Article  Google Scholar 

  • Livett, E. A., J. A. Lee, and J. H. Tallis. 1979. Lead, zinc, and copper analyses of British blanket peats. Journal of Ecology 67:865–891.

    Article  CAS  Google Scholar 

  • MacDonald, G. M. 1996. Non-aquatic Quaternary. p. 879–910. In J. Jansonius and D. C. McGregor (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Volume 2. Publishers Press, Salt Lake City, UT, USA.

    Google Scholar 

  • MacDonald, G. M., R. P Beukens, W. E. Kieser, and D. H. Vitt. 1987. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the ‘ice-free’ corridor of western Canada. Geology 15:837–40.

    Article  CAS  Google Scholar 

  • Maher, L. J. 1981. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Review of Palaeobotany and Palynology 32:153–191.

    Article  Google Scholar 

  • Mäkilä, M. 1997. Holocene lateral expansion, peat growth and carbon accumulation on Haukkasua, a raised bog in southeastern Finland. Boreas 26:1–14.

    Article  Google Scholar 

  • MacKenzie, A. B., J. G. Farmer, and C. L. Sugden. 1997. Isotopic evidence of the relative retention and mobility of lead and radiocaesium in Scottish ombrotrophic peats. The Science of the Total Environment 203:115–127.

    Article  CAS  Google Scholar 

  • Malmer, N., G. Svensson, and B. Wallén. 1997. Mass balance and nitrogen accumulation in hummocks on a South Swedish bog during the late Holocene. Ecography 20:535–549.

    Article  Google Scholar 

  • Maltby, E. and M. C. F. Proctor. 1996. Peatlands: their nature and role in the biosphere. p. 11–19. In E. Lappalainen (ed.) Global Peat Resources, Kukkalantie. International Peat Society, Jyväskylä, Finland.

    Google Scholar 

  • Manning, M. R. and W. H. Melhuish. 1994. Atmospheric Δ14C record from Wellington. In Trends: a Compendium of Data on Global Change. Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, U.S.A.

    Google Scholar 

  • Manning, S. W. and B. Weninger. 1992. A light in the dark: archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age. Antiquity 66:636–663.

    Google Scholar 

  • Manning, S. W., B. Kromer, P. I. Kuniholm, and M. W. Newton. 2001. Anatolian tree-rings and a new chronology for the east Mediterranean Bronze-Iron Ages. Science 294:2532–2535.

    Article  PubMed  CAS  Google Scholar 

  • Masarik, J. and J. Beer. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research 104:12099–12111.

    Article  CAS  Google Scholar 

  • Matthewes, J. A. 1985. Radiocarbon dating of surface and buried soils: principles, problems and prospects. p. 269–288. In K. S. Richards, R. R. Arnett, and S. Ellis (eds.) Geomorphology and Soils. George Allen & Unwin Ltd., London, England.

    Google Scholar 

  • Mauquoy, D., B. van Geel, M. Blaauw, and J. van der Plicht. 2002. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity. The Holocene 12:1–6.

    Article  Google Scholar 

  • McAndrews, J. H. 1966. Postglacial history of prairie savanna, and forest in northwestern Minnesota. Bulletin of the Torrey Botanical Club 22:1–72.

    Google Scholar 

  • McAndrews, J. H., A. A. Berti, and G. Norris. 1973. Key to the Quaternary pollen and spores of the Great Lakes region. Life Science Miscellaneous Publication, Royal Ontario Museum, Toronto, Ontario, Canada.

    Google Scholar 

  • McCormac, F. G., A. G. Hogg, T. G. F. Higham, J. Lynch-Stieglitz, W. S. Broecker, M. G. L. Baillie, J. Palmer, L. Xiong, J. R. Pilcher, D. Brown, and S. T. Hoper. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25: 1321–1324.

    Article  Google Scholar 

  • McCormac, F. G., P. J. Reimer, A. G. Hogg, T. F. G. Higham, M. G. L. Baillie, J. Palmer, and M. Stuiver. 2002. Calibration of the radiocarbon time scale for the southern hemisphere: AD 1850–950. Radiocarbon 44:641–651.

    CAS  Google Scholar 

  • McGee, E. J., P. A. Colgan, D. E. Dawson, B. Rafferty, and C. O’Keeffe. 1992. Effects of topography on Caesium-137 in montane peat soils and vegetation. Analyst 117:461–464.

    Article  PubMed  CAS  Google Scholar 

  • Middledorp, A. A. 1982. Pollen concentration as a basis for indirect dating and quantifying net organic and fungal production in a peat bog ecosystem. Review of Palaeobotany and Palynology 37:225–282.

    Article  Google Scholar 

  • Middledorp, A. A. 1986. Functional palaeoecology of the Hahenmoor raised bog ecosystem—a study of vegetation, history, production, and decomposition by means of pollen density dating. Review of Palaeobotany and Palynology 49:1–73.

    Article  Google Scholar 

  • Mitchell, P. I., W. R. Schell, A. McGarry, T. P. Ryan, J. A. Sanchex-Cabeza, and A. Vidal-Quadras. 1992. Studies of the vertical distribution of 134Cs, 137Cs, 238Pu, 239,240Pu, 241Pu, 241Am and 210Pb in ombrogenous mires at mid-latitudes. Journal of Radioanalytical and Nuclear Chemistry-Articles 156:361–387.

    Article  CAS  Google Scholar 

  • Mook, W. G. 1983. 14C calibration and the time-width of 14C samples. p. 517–525. In W. G. Mook and H. T. Waterbolk (eds.) Proceedings of the 1st International Conference on 14C and Archaeology, PACT Publication 8, Groningen, The Netherlands.

  • Moore, P. D., J. A. Webb, and M. E. Collinson. 1991. Pollen Analysis, 2nd Edition. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Moore, T. R., N. T. Roulet, and J. M. Waddington. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40:229–245.

    Article  CAS  Google Scholar 

  • Morris, W. A., J. K. Versteeg, C. H. Marvin, B. E. McCarry, and N. A. Rukavina. 1994. Preliminary comparisons between magnetic susceptibility and polycyclic aromatic hydrocarbon content in sediments from Hamilton Harbour, western Lake Ontario. The Science of the Total Environment 152:153–160.

    Article  CAS  Google Scholar 

  • Moser, R. N. 1993. A comparison of methods for the determination of the dating nuclides 210Pb and 226Ra. Journal of Radioanalytical and Nuclear Chemistry—Articles 173:283–292.

    Article  CAS  Google Scholar 

  • Neustupný, E. 1973. Absolute chronology of the Aeneolithic period. p. 243–248. In Actes du VIII congrès international des sciences préhistoriques et protohistoriques. Beograd 9–15 September 1971, II. Beograd: Comité d’Organisation.

    Google Scholar 

  • Nevissi, A. E. 1991. Measurement of 210Pb, 210Bi, and 210Po in environmental samples. Journal of Radioanalytical and Nuclear Chemistry—Articles 148:121–131.

    Article  CAS  Google Scholar 

  • Norton, S. A. 1986. Geochemistry of selected Maine peat deposits. Bulletin of the Maine Geological Survey 34:1–38.

    Google Scholar 

  • Norton, S. A. 1987. The stratigraphic record of atmospheric loading of metals at the ombrotrophic Big Heath Bog, Mt. Desert Island, Maine, U.S.A. p. 561–576. In T. C. Hutchinson, and K. M. Meema ( (eds.) Effects of Atmospheric Pollutants on Forests, Wetlands, and Agricultural Ecosystems. NATO ASI Series, Vol. G16. Springer-Verlag Berlin, Heidelberg, Germany.

    Google Scholar 

  • Norton, S. A., G. C. Evans, and J. S. Kahl. 1997. Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic Big Heath Bog and to nearby Sargent Mt. Pond, Maine, USA. Water, Air, and Soil Pollution 100:271–286.

    Article  CAS  Google Scholar 

  • Ohlson, M. and B. Dahlberg. 1991. Rate of peat increment in hummock and lawn communities on Swedish mires during the last 150 years. Oikos 61:369–378.

    Article  Google Scholar 

  • Ogden, J. G. 1986. An alternative to exotic spore or pollen addition in quantitative microfossil studies. Canadian Journal of Earth Sciences 23:102–106.

    Google Scholar 

  • Oldfield, F., P. G. Appleby, R. Cambray, J. Eakins, K. Barber, R. Batterbee, G. Pearson, and J. Williams. 1979. Pb-210, Cs-137, and Pu-239 profiles in ombrotrophic peat. Oikos 33:40–45.

    Article  CAS  Google Scholar 

  • Oldfield, F., P. R. J. Crooks, D. D. Harkness, and G. Petterson. 1997. AMS radiocarbon dating of organic fractions from varved lake sediments: and empirical test of reliability. Journal of Paleolimnology 18:87–91.

    Article  Google Scholar 

  • Oldfield, F., N. Richardson, and P. G. Appleby. 1995. Radiometric dating (210Pb, 137Cs, 241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance. The Holocene 5:141–148.

    Article  Google Scholar 

  • Oldfield, F., R. Thompson, and K. Barber. 1978. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections. Science 199:679–680.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, I. 1986. Radiometric dating. p. 273–312. In B. E. Berglund (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York, NY, USA.

    Google Scholar 

  • Olsson, I. 1991. Accuracy and precision in sediment chronology. Hydrobiologia 214:25–34.

    Article  Google Scholar 

  • Pakarinen, P. and E. Gorham. 1983. Mineral element composition of Sphagnum fuscum peats collected from Minnesota, Manitoba and Ontario. p. 417–429. In C. H. Fuchsman and S. A. Spigarelli (eds.) Proceedings of the International Symposium on Peat Utilization. Bemidji State University, Bemidji, MN, USA.

    Google Scholar 

  • Pakarinen, P. and R. J. K. Rinne. 1979. Growth rates of heavy metal concentrations of five moss species in paludified spruce forests. Lindbergia 5:77–83.

    CAS  Google Scholar 

  • Pakarinen, P. and K. Tolonen. 1977. On the growth rate and dating of surface peat. Suo 28:19–24.

    Google Scholar 

  • Pakarinen, P., K. Tolonen, S. Heikkinen, and A. Nurmi. 1983. Accumulation of metals in Finnish raised bogs. Environmental Biogeochemistry 35:377–382.

    CAS  Google Scholar 

  • Patterson, W. A. III, K. J. Edwards, and D. J. Maguire. 1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6:3–23.

    Article  Google Scholar 

  • Pearson, G. W. 1987. How to cope with calibration. Antiquity 61: 98–103.

    Google Scholar 

  • Pearson, G. W. 1986. Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique. Radiocarbon 28:292–299.

    CAS  Google Scholar 

  • Pearson, G. W., J. R. Pilcher, and M. G. L. Baillie. 1983. High precision 14C measurements of Irish oaks to show the natural 14C variations from 200BC to 4000BC. Radiocarbon 25:179–186.

    CAS  Google Scholar 

  • Pearson, G. W., J. R. Pilcher, M. G. L. Baillie, and J. Hillam. 1977. Absolute radiocarbon dating using a low altitude European treering calibration. Nature 270:25–28.

    Article  Google Scholar 

  • Pennington, W., R. S. Cambray, J. D. Eakins, and D. D. Harkness. 1975. Radionuclide dating of the recent sediments of Blelham Tarn. Freshwater Biology 6:317–331.

    Article  Google Scholar 

  • Pilcher, J. R. 1991. Radiocarbon dating for the Quaternary scientist. Quaternary Proceedings 1:27–33.

    Google Scholar 

  • Pilcher, J. R. and V. Hall. 1996. Tephrochronological studies in northern England. The Holocene 6:100–105.

    Article  Google Scholar 

  • Pilcher, J. R., V. A. Hall, and F. F. McCormac. 1996. An outline tephrochronology for the north of Ireland. Journal of Quaternary Science 11:485–494.

    Article  Google Scholar 

  • Pitkanen, A. and P. A. Huttunen. 1999. 1300-year forest-fire history at a site in eastern Finland based on charcoal and pollen records in laminated lake sediment. Holocene 9:311–320.

    Article  Google Scholar 

  • Pitkanen, A., H. Lehtonen, and P. Huttunen. 1999. Comparison of sedimentary microscopic charcoal particle records in a small lake with dendrochronological data: evidence for the local origin of microscopic charcoal produced by forest fires of low intensity in eastern Finland. Holocene 9:559–567.

    Article  Google Scholar 

  • Polach, H. A. 1984. Radiocarbon targets for AMS: a review of perceptions, aims and achievements. Nuclear Instruments and Methods in Physics Research B5:259–264.

    Article  Google Scholar 

  • Prentice, I. C. 1988. Records of vegetation in time and space: the principles of pollen analysis. p 17–42. In B. Huntley and T. Webb III (eds.) Vegetation History. Kluwer, The Hague, The Netherlands.

    Google Scholar 

  • Puchegger, S., W. Rom, and P. Steier. 2000. Automated evaluation of 14C measurements. Nuclear Instruments and Methods in Physics Research B 172:274–280.

    Article  CAS  Google Scholar 

  • Punning, J. M. and R. Alliksaar. 1997. The trapping of fly-ash particles in the surface layer of Sphagnum-dominated peat. Water, Air, and Soil Pollution 94:59–69.

    CAS  Google Scholar 

  • Punning, J. M., M. Ilomets, and T. Koff. 1993. Possibilities for detailed dating of peat bog deposits. Radiocarbon 35:379–385.

    CAS  Google Scholar 

  • Raisanen, J. 1997. Objective comparison of patterns of CO2 induced climate change in coupled GCM experiments. Climate Dynamics 13:197–211.

    Article  Google Scholar 

  • Ralph, F. K. and H. N. Michael. 1974. Twenty-five years of radiocarbon dating. American Scientist 62:553–560.

    CAS  Google Scholar 

  • Rapaport, R. A. and S. J. Eisenreich. 1986. Atmospheric deposition of toxaphene to eastern North America derived from peat accumulation. Atmospheric Environment 20:2367–2379.

    Article  CAS  Google Scholar 

  • Rapaport, R. A. and S. J. Eisenreich. 1988. Historical atmospheric inputs of high molecular weight chlorinated hydrocarbons to eastern North America. Environmental Science and Technology 22:931–941.

    Article  CAS  Google Scholar 

  • Reimer, P. J., K. A. Hughen, T. P. Guilderson, G. McCormac, M. G. L. Baillie, E. Bard, P. Barratt, J. W. Beck, C. E. Buck, P. E. Damon, M. Friedrich, B. Kromer, C. Bronk Ramsey, R. W. Reimer, S. Remmele, J. R. Southon, M. Stuiver, and J. van der Plicht. 2002. Preliminary report of the first workshop of the IntCal04 Radiocarbon Calibration/Comparison Working Group. Radiocarbon 44:653–661.

    Google Scholar 

  • Robbins, J. A. 1978. Geochemical and geophysical applications of radioactive lead. p. 285–393. In J. O. Nriagu (ed.) Blogeochemistry of Lead in the Environment. Elsevier Scientific, Amsterdam, The Netherlands.

    Google Scholar 

  • Robinson, D. 1984. The estimation of the charcoal content of sediment: a comparison of methods on peat sections from the Island of Arran. Circaea 2:121–128.

    Google Scholar 

  • Robinson, S. D. and T. R. Moore. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochemical Cycles 13:591–601.

    Article  CAS  Google Scholar 

  • Rose, N. L. 1990. An extraction method for carbonaceous particles from lake sediments. Journal of Paleolimnology 3:45–53.

    Article  Google Scholar 

  • Rose, N. L., S. Harlock, P. G. Appleby, and R. W. Battarbee. 1995. Dating of recent lake-sediments in the United kingdom and Ireland using spheroidal carbonaceous particle (SCP) concentration profiles. The Holocene 5:328–335.

    Article  Google Scholar 

  • Rosen, H., T. Novakov, and B. A. Bodhaine. 1981. Soot in the arctic. Atmospheric Environment 15:1371–1374.

    Article  CAS  Google Scholar 

  • Rowell, K. T. and J. Turner. 1985. Litho-, humic- and pollen stratigraphy at Quick Moss, Northumberland. Journal of Ecology 73:11–25.

    Article  Google Scholar 

  • Rowley, J. R. and J. Rowley. 1956. Vertical migration of spherical and aspherical pollen in a Sphagnum bog. Proceedings of the Minnesota Academy of Science 24:29–30.

    Google Scholar 

  • Rubin, S. and M. D. Kamen. 1941. Long-lived radioactive carbon: 14C. Physical Review 59:349–354.

    Article  Google Scholar 

  • Rummery, T. A., J. Bloemendal, J. Dearing, F. Oldfield, and R. Thompson. 1979. The persistence of fire-induced magnetic oxides in soils and lake sediments. Annals of Geophysics 35:103–107.

    CAS  Google Scholar 

  • Sanders, G., S. J. Eisenreich, and K. C. Jones. 1994. The rise and fall of PCBs: Time-trend data from temperate industrialized countries. Chemosphere 29:2201–2208.

    Article  CAS  Google Scholar 

  • Sanders, G., K. C. Jones, and J. Hamilton-Taylor. 1995. PCB and PAH fluxes to a dated UK peat core. Environmental Pollution 89:17–25.

    Article  CAS  Google Scholar 

  • Sanders, G., K. C. Jones, J. Hamilton-Taylor, and H. Dörr. 1992. Historical inputs of polychlorinated biphenyls and other organochlorines to a dated lacustrine sediment core in rural England. Environmental Science and Technology 26:1815–1821.

    Article  CAS  Google Scholar 

  • Sanders, G., K. C. Jones, J. Hamilton-Taylor and H. Dorr. 1993. Concentrations and deposition fluxes of polynuclear aromatic hydrocarbons and heavy metals in the dated sediments of a rural English lake. Environmental Toxicology and Chemistry 12:1567–1581.

    Article  CAS  Google Scholar 

  • Sapozhnikov, Y. A., O. B. Egorov, I. P. Efimov, S. V. Pirogova, and N. K. Kutseva. 1993. Determination of 210Pb in bottom sediments via 210Bi. Journal of Radioanalytical and Nuclear Chemistry—Letters 176:353–359.

    Article  CAS  Google Scholar 

  • Sarmaja-Korjonen, K. 1991. Comparison of two methods of counting microscopic charcoal particles in peat. Bulletin of the Geological Society of Finland, 63, Part 1: 41–48.

    Google Scholar 

  • Scharpenseel, H. W. 1971. Radiocarbon dating of soils. Soviet Soil Science 3:76–83.

    Google Scholar 

  • Scharpenseel, H. W. and H. Schiffmann. 1977. Radiocarbon dating of soils, a review. Zeitschrift für Pflanzenernahrung Dungung und Bodenkunde 140:159–174.

    Article  CAS  Google Scholar 

  • Schell, W. R. 1986. Deposited atmospheric chemicals: a mountaintop peat bog in Pennsylvania provides a record dating to 1800. Environmental Science Technology 20:847–853.

    Article  CAS  Google Scholar 

  • Schell, W. R. 1987. A historical perspective of atmospheric chemicals deposited on a mountain top peat bog in Pennsylvania. International Journal of Coal Geology 8:147–173.

    Article  CAS  Google Scholar 

  • Schell, W. R., A. L. Sanchez, and C. Granlund. 1986. New data from peat bogs may give a historical perspective on acid deposition. Water, Air, and Soil Pollution 30:393–409.

    Article  CAS  Google Scholar 

  • Schell, W. R. and M. Tobin. 1994. 210Pb dating using the CRS-MV model with historical data to test and evaluate accuracy, p. 355–368. In M. Garcia-Leon and R. Garcia-Tenorio (eds.) Low-Level Measurements of Radioactivity in the Environment. Proceedings of the Third International Summer School, World Scientific Publishing Company, Huelva, Spain.

    Google Scholar 

  • Schell, W. R., M. J. Tobin, and C. D. Massey. 1989. Evaluation of trace metal deposition history and potential element mobility in selected cores from peat and wetland ecosystems. The Science of the Total Environment 87/88:19–42.

    Google Scholar 

  • Schell, W. R., M. J. Tobin, M. J. V. Novak, R. K. Wieder, and P. I. Mitchell. 1997. Deposition history of trace metals and fallout radionuclides in wetland ecosystems using 210Pb chronology. Water, Air, and Soil Pollution 100:233–239.

    Article  CAS  Google Scholar 

  • Schelske, C. L., A. Peplow, M. Brenner, and C. N. Spencer. 1994. Low-background gamma counting: applications for 210Pb-dating of sediments. Journal of Paleolimnology 10:115–128.

    Article  Google Scholar 

  • Schelske, C. L., J. A. Robbins, W. D. Gardner, D. J. Conley, and R. A. Bourbonniere. 1988. Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 45:1291–1303.

    CAS  Google Scholar 

  • Schultze, E. D., A. Prokuschkin, A. Arneth, N. Knorre, and E. A. Vaganov. 2002. Net ecosystem productivity and peat accumulation in a Siberian Aapa mire. Tellus B 54:531–536.

    Article  Google Scholar 

  • Shand, C. A., M. V. Cheshire, S. Smith, M. Vidal, and G. Rauret. 1994. Distribution of radiocaesium in organic soils. Journal of Environmental Radioactivity 23:285–302.

    Article  CAS  Google Scholar 

  • Shore, J. S., D. D. Bartley, and D. D. Harkness. 1995. Problems encountered with the C-14 dating of peat. Quaternary Science Reviews 14:373–383.

    Article  Google Scholar 

  • Shotyk, W., A. K. Cheburkin, P. G. Appleby, A. Fankhauser, and J. D. Kramers. 1997a. Lead in three peat bog profiles, Jura Mountains, Switzerland: enrichment factors, isotopic composition, and chronology of atmospheric deposition. Water, Air, and Soil Pollution 100:297–310.

    Article  CAS  Google Scholar 

  • Shotyk, W., S. A. Norton, and J. G. Farmer. 1997b. Summary of the workshop on peat bog archives of atmospheric metal deposition. Water, Air, and Soil Pollution 100:213–219.

    Article  CAS  Google Scholar 

  • Shotyk, W., D. Weiss, P. G. Appleby, A. K. Cherburkin, R. Frei, M. Gloor, J. D. Kramers, S. Reese, and W. O. van der Knaap. 1998. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281: 1635–1640.

    Article  PubMed  CAS  Google Scholar 

  • Shukla, B. S. and S. R. Joshi. 1989. Evaluation of the CIC model of 210Pb dating of sediments. Environmental Geology and Water Sciences 14:73–76.

    Article  CAS  Google Scholar 

  • Simonich, S. L. and R. A. Hites. 1995. Global distribution of persistent organochlorine compounds. Science 269:1851–1854.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. T., P. G. Appleby, J. Hilton, and N. Richardson. 1997. Inventories and fluxes of 210Pb, 137Cs and 241Am determined from the soils of three small catchments in Cumbria, UK. Journal of Environmental Radioactivity 37:127–142.

    Article  CAS  Google Scholar 

  • Spearing, A. M. 1972. Cation-exchange capacity and galacturonic acid content of several species of Sphagnum in Sandy Ridge Bog, central New York State. The Bryologist 75:154–158.

    Article  CAS  Google Scholar 

  • Stockmarr, J. 1971. Calcium tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615–621.

    Google Scholar 

  • Stout, J. D., K. M. Goh, and T. A. Rafter. 1981. Chemistry and turnover of naturally occuring resistant organic compounds in soil. p. 1–73. In E. A. Paul and J. N. Ladd (eds.). Soil Biochemistry, vol. 5. Marcel-Dekker, New York, NY, USA.

    Google Scholar 

  • Stuiver, M. 1982. A high-precision calibration of the AD radiocarbon time scale. Radiocarbon 24:1–26.

    CAS  Google Scholar 

  • Stuiver, M. and T. F. Braziunas. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3:289–305.

    Article  Google Scholar 

  • Stuiver, M. and T. F. Braziunas. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25:329–32.

    Article  CAS  Google Scholar 

  • Stuiver, M., T. F. Braziunas, B. Becker, and B. Kromer. 1991. Climatic, solar, oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35:1–24.

    Article  CAS  Google Scholar 

  • Stuiver, M. and G. W. Pearson. 1986. High precision calibration of the radiocarbon time scale, AD 1950-500 B.C. Radiocarbon 28:805–838.

    CAS  Google Scholar 

  • Stuiver, M. and H. Polach. 1977. Reporting of 14C data. Radiocarbon 19:355–363.

    Google Scholar 

  • Stuiver, M. and P. J. Reimer. 1986. A computer program for radiocarbon age calibration. Radiocarbon 28:1022–1030.

    CAS  Google Scholar 

  • Stuiver, M. and P. J. Reimer. 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230.

    Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht, and M. Spurk. 1998a. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083.

    CAS  Google Scholar 

  • Stuiver, M., P. J. Reimer, and T. F. Braziunas. 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1151.

    CAS  Google Scholar 

  • Suess, H. E. 1965. Secular variations of the cosmic-ray-produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research 70:5937–5952.

    Article  CAS  Google Scholar 

  • Tallis, J. H. 1975. Tree remains in southern Pennine peats. Nature 256:482–484.

    Article  Google Scholar 

  • Taylor, R. E. 1987. Radiocarbon Dating: an Archaeological Perspective. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Taylor, R. E. 1997. Radiocarbon dating. p. 65–96. In R. E. Taylor and M. J. Aitken (eds.) Chronometric Dating in Archaeology. Plenum Press, New York, NY, USA.

    Google Scholar 

  • Taylor, R. E. 2000. Fifty years of radiocarbon dating. American Scientist 88:60–67.

    Google Scholar 

  • Taylor, R. E., A. Long, and R. Kra (eds.) 1992. Radiocarbon after Four Decades: an Interdisciplinary Perspective. Springer Verlag, New York, NY, USA.

    Google Scholar 

  • Thompson, R. 1980. Use of the word “influx” in palaeolimnological studies. Quaternary Research 14:269–270.

    Article  Google Scholar 

  • Thompson, R. and F. Oldfield. 1986. Environmental Magnetism. Allen & Unwin, London, UK.

    Google Scholar 

  • Tinner, W. and F. S. Hu. 2003. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13:291–296.

    Article  Google Scholar 

  • Tobin, M. J. and W. R. Schell. 1988. Recent developments in sedimentation modeling and the statistical reliability of the 210Pb method. Paper presented at the Trace Metals in Lakes Conference, McMaster University, Ontario, Canada.

  • Tolonen, K. 1983. The post-glacial fire record. p. 21–44. In R. W. Wein and D. A. MacLean (eds.) The Role of Fire in Northern Circumpolar Ecosystems. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Tolonen, K., P. Goran, J. Hogne, S. Eloni, and A. Jukka. 1993. High resolution carbon-14 of surface peat using the AMS technique. Suo 43:271–275.

    Google Scholar 

  • Tolonen, K., R. Haapalahti, and J. Suksi. 1990. Comparison of varve dated soot ball chronology and lead-210 dating in Finland. Geological Survery of Finland, Special Paper 14:65–75.

    Google Scholar 

  • Tolonen, K., A. Siiriäinen, and R. Thompson. 1975. Prehistoric field erosion sediment in Lake Lojarvi in S. Finland and its palaeomagnetic dating. Annales Botanici Fennici 12:161–164.

    Google Scholar 

  • Tolonen, M. 1985a. Palaeoecology of annually laminated sediments in Lake Ahvenainen, South Finland. Part II. Comparison of dating methods. Annales Botanici Fennici 15:209–222.

    Google Scholar 

  • Tolonen, M. 1985b. Palaeoecological record of local fire history from a peat deposit in SW Finland. Annales botanici Fennici 22:15–29.

    Google Scholar 

  • Tolonen, M. 1985c. Palaeoecological reconstruction of vegetation in a prehistoric settlement area, Salo, SW Finland. Annales Botanici Fennici 22:101–116.

    Google Scholar 

  • Tolonen, M. 1978. Palaeoecology of annually laminated sediments in Lake Ahvenainen, S. Finland. I. Pollen and charcoal analysis and their relation to human impact. Annales Botanici Fennici 15:177–208.

    Google Scholar 

  • Törnqvist, T. E., A. F. M. De Jong, W. A. Oosterbaan, and K. Van Der Borg. 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34:566–577.

    Google Scholar 

  • Truman, H. V. 1937. Fossil evidence of two prairie invasions of Wisconsin. Transactions of the Wisconsin Academy of Sciences, Arts, and Letters 30:35–42.

    Google Scholar 

  • Trumbore, S. E. and J. W. Harden. 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research 102:28817–28830.

    Article  CAS  Google Scholar 

  • Turetsky, M. R., R. K. Wieder, C. J. Williams, and D. H. Vitt. 2000. Organic matter accumulation, peat chemistry and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:379–392.

    Google Scholar 

  • Turner, J. and S. M. Peglar. 1988. Temporally-precise studies of vegetation history. p. 754–777. In B. Huntley and T. Webb III (eds.) Vegetation History. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • United States Environmental Protection Agency. 1975. DDT, a review of scientific and economic aspects of the decision to ban its use as a pesticide. U.S. Environmental Protection Agency, Office of Pesticide Programs, U.S. Government Printing Office, Washington, DC, USA, EPA-540/1-75-022.

    Google Scholar 

  • Urban, N. R., S. J. Eisenreich, and D. F. Grigal. 1989. Sulfur cycling in a forested Sphagnum bog in northern Minnesota. Biogeochemistry 7:81–109.

    Article  Google Scholar 

  • Urban, N. R., S. J. Eisenreich, D. F. Grigal, and K. T. Schurr. 1990. Mobility and diagenesis of Pb and Pb-210 in peat. Geochimica et Cosmochimica Acta 54:3329–3346.

    Article  CAS  Google Scholar 

  • Valentine, D. W., E. A. Holland, and D. S. Schimel. 1994. Ecosystem and physiological controls over methane production in northern wetlands. Journal of Geophysical Research 99:1563–1571.

    Article  CAS  Google Scholar 

  • van der Knaap, W. O. and B. Ammann. 1997. Depth-age relationships of 25 well-dated Swiss Holocene pollen sequences archived in the alpine palynological data-base. Revue Paléobiology 16:433–480.

    Google Scholar 

  • van der Plicht, J. 1993. The Groningen radiocarbon calibration program. Radiocarbon 35:231–237. Available from: http://www.cio.phys.rug.nl/HTML-docs/carbon14/cal25.html

    Google Scholar 

  • van der Plicht, J. (ed.) 2000. Introduction. Special varves/comparison issue. Radiocarbon 42:313–322.

    Google Scholar 

  • van der Plicht, J., E. Jansma, and H. Kars. 1995. The “Amsterdam Castle”: a case study of wiggle-matching and the proper calibration curve. Radiocarbon 37:965–968.

    Google Scholar 

  • van Geel, B., and W. G. Mook. 1989. High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31:151–155.

    Google Scholar 

  • van Geel, B., J. van der Plicht, M. R. Kilian, E. R. Klaver, J. H. M. Kouwenberg, H. Renssen, I. Reynaud-Farrera, and H. T. Waterbolk. 1998. The sharp rise of δ14C ca. 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40:535–550.

    Google Scholar 

  • Van Metre, P. C., E. Callender, and C. C. Fuller. 1997. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs. Environmental Science and Technology 31:2339–2344.

    Article  Google Scholar 

  • van Zant, K. L., T. Webb III, G. M. Peterson, and R. G. Baker. 1979. Increased Cannabis/Humulus pollen, an indicator of European agriculture in Iowa. Palynology 3:227–233.

    Google Scholar 

  • Vile, M. A., M. J. V. Novak, E. Brízová, R. K. Wieder, and W. R. Schell. 1995. Historical rates of atmospheric Pb deposition using 210Pb dated peat cores: corroboration, computation, and interpretation. Water, Air, and Soil Pollution 79:89–106.

    Article  CAS  Google Scholar 

  • Vile, M. A., R. K. Wieder, and M. Novák. 1999. Mobility of Pb in Sphagnum-derived peat. Biogeochemistry 45:35–52.

    CAS  Google Scholar 

  • Vile, M. A., R. K. Wieder, and M. Novák. 2000. 200 years of Pb deposition throughout the Czech Republic: patterns and sources. Environmental Science and Technology 34:12–21.

    Article  CAS  Google Scholar 

  • Vitt, D. H. 1990. Growth and production dynamics of boreal mosses over climatic, chemical, and topographical gradients. Botanical Journal of the Linnean Society 104:35–59.

    Article  Google Scholar 

  • Vitt, D. H. and P. Pakarinen. 1977. The bryophyte vegetation, production, and organic components of Truelove Lowland. p. 225–244. In L. C. Bliss (ed.) True love Lowland, Devon Island, Canada: a High Arctic Ecosystem. The University of Alberta Press, Edmonton, Alberta, Canada.

    Google Scholar 

  • Vogel J. S., D. E. Nelson, and J. R. Southon. 1987. C-14 background levels in an accelerator mass spectrometry system. Radiocarbon. 29:323–329.

    CAS  Google Scholar 

  • von Gunten, H. R. 1995. Radioactivity—a tool to explore the past. Radiochimica Acta 70:305–316.

    Google Scholar 

  • Vorren, K.-D. and B. Vorren. 1976. The problem of dating a palsa. Two attempts involving pollen diagrams, determination of moss subfossils, and C14-datings. Astarte 8:73–81.

    Google Scholar 

  • Waddington, J. C. B. 1969. A stratigraphic record of the pollen influx to a lake in the Big Woods of Minnesota. Geological Society of America Special Paper 123:263–283.

    Google Scholar 

  • Wahlen, M. 1993. The global methane cycle. Annual Reviews in Earth and Planetary Science 21:407–426.

    Article  CAS  Google Scholar 

  • Walling, D. and Q. He. 1993. Towards improved interpretation of 137Cs Profiles in lake sediments. p. 31–53. In J. McManus and R. Duck (eds.) Geomorphology and Sedimentology of Lakes and Reservoirs. John Wiley and Sons, Ltd., New York, NY, USA.

    Google Scholar 

  • Wania, F. 1999. On the origin of elevated levels of persistent chemicals in the environment. Environmental Science and Pollution Research 6:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Wania, F. and D. Mackay. 1999. The evolution of mass balance models of persistent organic pollutant fate in the environment. Environmental Pollution 100:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Webb, T. III. 1973. A comparison of modern and presettlement pollen from southern Michigan. Review of Palaeobotany and Palynology 16:137–156.

    Article  Google Scholar 

  • Weiss, D., W. Shotyk, A. K. Cheburkin, M. Gloor, and S. Reese. 1997. Atmospheric lead deposition from 12,400 to ca. 2,000 yrs BP in a peat bog profile, Jura Mountains, Switzerland. Water, Air, and Soil Pollution 100:311–324.

    Article  CAS  Google Scholar 

  • Weninger, B. and O. Jöris. 2001. Manual <Calpal>, Program Version May 2001: Glacial Radiocarbon Conversion 0–50 Ka. Software available from: http://www.calpal.de/

  • Wershaw, R. L., M. J. Fishman, R. R. Grabbe, and L. E. Lowe (eds.). 1987. Techniques of Water-Resources Investigations, Book 5, U.S. Geological Survey, Denver, CO, USA.

    Google Scholar 

  • West, S., D. J. Charman, J. P. Grattan, and A. K. Cherburkin. 1997. Heavy metals in Holocene peats from southwest England: Detecting mining impacts and atmospheric pollution. Water, Air, and Soil Pollution 100:343–353.

    Article  CAS  Google Scholar 

  • Wickström, K. and K. Tolonen. 1987. The history of airborne polycyclic aromatic hydrocarbons (PAH) and Perylene as recorded in dated lake sediments. Water, Air, and Soil Pollution 32:155–175.

    Article  Google Scholar 

  • Wieder, R. K. 2001. Past, present and future peatland carbon balance—an empirical model based on 210Pb-dated cores. Ecological Applications 7:321–336.

    Google Scholar 

  • Wieder, R. K. 1990. Metal cation binding to Sphagnum peat and sawdust: relation to wetland treatment of metal-polluted waters. Water, Air, and Soil Pollution 53:391–400.

    CAS  Google Scholar 

  • Wieder, R. K., M. Novak, W. R. Schell, and T. Rhodes. 1994. Rates of peat accumulation over the past 200 years in five Sphagnum-dominated peatlands in the United States. Journal of Paleolimnology 12:35–47.

    Article  Google Scholar 

  • Wigley, T. M. L. and A. B. Muller. 1981. Fractionation corrections in radiocarbon dating. Radiocarbon 23:173–190.

    CAS  Google Scholar 

  • Wik, M. and I. Renberg. 1996. Environmental reviews of carbonaceous fly-ash particles from fossil fuel combusion: a summary. Journal of Paleolimnology 15:193–206.

    Article  Google Scholar 

  • Wik, M., I. Renberg, and J. Darley. 1986. Sedimentary records of carbonaceous particles from fossil fuel combustion. Hydrobiologia 143:387–394.

    Article  CAS  Google Scholar 

  • Williams, M. 1992. Evidence for the dissolution of magnetite in recent Scottish peats. Quaternary Research 37:171–182.

    Article  CAS  Google Scholar 

  • Winkler, M. 1985. Charcoal analysis for paleoenvironmental interpretation: a chemical assay. Quaternary Research 23:313–326.

    Article  Google Scholar 

  • Wood, G. D., A. M. Gabriel, and J. C. Lawson. 1996. Palynological techniques—processing and microscopy. p. 29–50. In J. Jansonius and D. C. McGregor (eds.) Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Volume 1. Publishers Press, Salt Lake City, UT, USA.

    Google Scholar 

  • Yavitt, J. B. and G. E. Lang. 1990. Methane production in contrasting wetland sites: response to organo-chemical components of peat and to sulfate reduction. Geomicrobiology Journal 8:27–46.

    Article  CAS  Google Scholar 

  • Yrjänheikki, E., J. H. Rantanen, V. Silano, and S. Tarkowski (eds.). 1987. PCBs, PCDDs, and PCDFs: Prevention and control of accidental and environmental exposures. WHO, Copenhagen, Denmark.

    Google Scholar 

  • Zoltai, S. C. 1991. Estimating the age of peat samples from their weight: a study from west-central Canada. The Holocene 1:68–73.

    Article  Google Scholar 

  • Zoltai, S. C. and P. J. Martikainen. 1996. The role of forested peatlands in the global carbon cycle. NATO ASI Series I, 40:47–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turetsky, M.R., Manning, S.W. & Wieder, R.K. Dating recent peat deposits. Wetlands 24, 324–356 (2004). https://doi.org/10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2

Key Words

Navigation