Skip to main content

Advertisement

Log in

Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biomass for activated carbon production has had been gaining interest in a wide variety of applications such as water filtration, gas adsorption, and electrochemical devices as a renewable carbon source while meeting desired porosity, surface area, conductivity, and stability requirements. Activated carbon production has been extensively investigated, proving to provide high performance in applications including electrochemical devices. Hydrothermal carbonization (HTC) has shown potential as a pretreatment method for activated carbon production, especially when surface functionalization is desired. However, research into catalytic HTC is still limited. In this review, the processing methods used to convert biomass waste products into high value activated carbon are briefly reviewed, with a focus on recent progress in catalytic HTC as a pretreatment method to activated carbon. Areas of interest for catalytic HTC for activated carbon production are identified. Recent studies have found that the use of catalysts enhances the degree of carbonization, surface modification, and introduction of key heteroatoms significantly augmenting the performance of activated carbon. With further development of catalytic HTC technology, more competent carbon material for electrochemical devices can be produced cost-effectively and move towards meeting the ever-increasing demands of activated carbons for high-performance electrochemical devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deng, X., Zhao, B., Zhu, L., Shao, Z.: Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon N. Y. 93, 48–58 (2015). https://doi.org/10.1016/j.carbon.2015.05.031

    Article  Google Scholar 

  2. Jin, Y., Tian, K., Wei, L., Zhang, X., Guo, X.: Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. J. Mater. Chem. A. 4, 15968–15979 (2016). https://doi.org/10.1039/c6ta05872h

    Article  Google Scholar 

  3. Liu, Y., Huang, B., Lin, X., Xie, Z.: Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors: via an ionothermal approach. J. Mater. Chem. A. 5, 13009–13018 (2017). https://doi.org/10.1039/c7ta03639f

    Article  Google Scholar 

  4. Balakumar, K., Sathish, R., Kalaiselvi, N.: Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium-sulfur system. Electrochim. Acta. 209, 171–182 (2016). https://doi.org/10.1016/j.electacta.2016.05.069

    Article  Google Scholar 

  5. Liu, Y., Guo, Y., Zhu, Y., An, D., Gao, W., Wang, Z., Ma, Y., Wang, Z.: A sustainable route for the preparation of activated carbon and silica from rice husk ash. J. Hazard. Mater. 186, 1314–1319 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.007

    Article  Google Scholar 

  6. Singh, G., Lakhi, K.S., Kim, I.Y., Kim, S., Srivastava, P., Naidu, R., Vinu, A.: Highly efficient method for the synthesis of activated mesoporous biocarbons with extremely high surface area for high-pressure CO2 adsorption. ACS Appl. Mater. Interfaces. 9, 29782–29793 (2017). https://doi.org/10.1021/acsami.7b08797

    Article  Google Scholar 

  7. Yahya, M.A., Al-Qodah, Z., Ngah, C.W.Z.: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2015.02.051

    Article  Google Scholar 

  8. Deng, J., Li, M., Wang, Y.: Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18, 4824–4854 (2016). https://doi.org/10.1039/c6gc01172a

    Article  Google Scholar 

  9. Abioye, A.M., Ani, F.N.: Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sustain. Energy Rev. 52, 1282–1293 (2015). https://doi.org/10.1016/j.rser.2015.07.129

    Article  Google Scholar 

  10. Laine, J., Calafat, A.: Factors affecting the preparation of activated carbons from coconut shell catalized by potassium. Carbon N. Y. 29, 949–953 (1991). https://doi.org/10.1016/0008-6223(91)90173-G

    Article  Google Scholar 

  11. Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., Duan, X.: Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 101, 6163–6169 (2010). https://doi.org/10.1016/j.biortech.2010.03.001

    Article  Google Scholar 

  12. Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., Xia, H.: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind. Crops Prod. 28, 190–198 (2008). https://doi.org/10.1016/j.indcrop.2008.02.012

    Article  Google Scholar 

  13. Azevedo, D.C.S., Araújo, J.C.S., Bastos-Neto, M., Torres, A.E.B., Jaguaribe, E.F., Cavalcante, C.L.: Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater. 100, 361–364 (2007). https://doi.org/10.1016/j.micromeso.2006.11.024

    Article  Google Scholar 

  14. Jain, A., Jayaraman, S., Balasubramanian, R., Srinivasan, M.P.: Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. J. Mater. Chem. A. 2, 520–528 (2014). https://doi.org/10.1039/C3TA12648J

    Article  Google Scholar 

  15. Sun, L., Tian, C., Li, M., Meng, X., Wang, L., Wang, R., Yin, J., Fu, H.: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A. 1, 6462–6470 (2013). https://doi.org/10.1039/c3ta10897j

    Article  Google Scholar 

  16. Madhu, R., Sankar, K.V., Chen, S.-M., Selvan, R.K.: Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. RSC Adv. 4, 1225–1233 (2014). https://doi.org/10.1039/C3RA45089A

    Article  Google Scholar 

  17. Gao, S., Fan, H., Zhang, S.: Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J. Mater. Chem. A. 2, 18263–18270 (2014). https://doi.org/10.1039/C4TA03558E

    Article  Google Scholar 

  18. Sudaryanto, Y., Hartono, S.B., Irawaty, W., Hindarso, H., Ismadji, S.: High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour. Technol. 97, 734–739 (2006). https://doi.org/10.1016/j.biortech.2005.04.029

    Article  Google Scholar 

  19. Foo, K.Y., Hameed, B.H.: Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour. Technol. 112, 143–150 (2012). https://doi.org/10.1016/j.biortech.2012.01.178

    Article  Google Scholar 

  20. Şentorun-Shalaby, Ç, Uçak-Astarlioǧlu, M.G., Artok, L., Sarici, Ç: Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous Mesoporous Mater. 88, 126–134 (2006). https://doi.org/10.1016/j.micromeso.2005.09.003

    Article  Google Scholar 

  21. Martínez, M.L., Torres, M.M., Guzmán, C.A., Maestri, D.M.: Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind. Crops Prod. 23, 23–28 (2006). https://doi.org/10.1016/j.indcrop.2005.03.001

    Article  Google Scholar 

  22. Caturla, F., Molina-Sabio, M., Rodríguez-Reinoso, F.: Preparation of activated carbon by chemical activation with ZnCl2. Carbon N. Y. 29, 999–1007 (1991). https://doi.org/10.1016/0008-6223(91)90179-M

    Article  Google Scholar 

  23. Dolas, H., Sahin, O., Saka, C., Demir, H.: A new method on producing high surface area activated carbon: the effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell. Chem. Eng. J. 166, 191–197 (2011). https://doi.org/10.1016/j.cej.2010.10.061

    Article  Google Scholar 

  24. Aygün, A., Yenisoy-Karakaş, S., Duman, I.: Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 66, 189–195 (2003). https://doi.org/10.1016/j.micromeso.2003.08.028

    Article  Google Scholar 

  25. Ahmadpour, A., Do, D.D.: The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon N. Y. 35, 1723–1732 (1997). https://doi.org/10.1016/S0008-6223(97)00127-9

    Article  Google Scholar 

  26. Girgis, B.S., Yunis, S.S., Soliman, A.M.: Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater. Lett. 57, 164–172 (2002). https://doi.org/10.1016/S0167-577X(02)00724-3

    Article  Google Scholar 

  27. Evans, M.J.B., Halliop, E., MacDonald, J.A.F.: The production of chemically-activated carbon. Carbon N. Y. 37, 269–274 (1999). https://doi.org/10.1016/S0008-6223(98)00174-2

    Article  Google Scholar 

  28. Oliveira, L.C.A., Pereira, E., Guimaraes, I.R., Vallone, A., Pereira, M., Mesquita, J.P., Sapag, K.: Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 165, 87–94 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.064

    Article  Google Scholar 

  29. Zhang, T., Walawender, W.P., Fan, L.T., Fan, M., Daugaard, D., Brown, R.C.: Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J. 105, 53–59 (2004). https://doi.org/10.1016/j.cej.2004.06.011

    Article  Google Scholar 

  30. Cagnon, B., Py, X., Guillot, A., Stoeckli, F., Chambat, G.: Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 100, 292–298 (2009). https://doi.org/10.1016/j.biortech.2008.06.009

    Article  Google Scholar 

  31. Foo, K.Y., Hameed, B.H.: Mesoporous activated carbon from wood sawdust by K2CO3activation using microwave heating. Bioresour. Technol. 111, 425–432 (2012). https://doi.org/10.1016/j.biortech.2012.01.141

    Article  Google Scholar 

  32. Khezami, L., Ould-Dris, A., Capart, R.: Activated carbon from thermo-compressed wood and other lignocellulosic precursors. BioResources. 2, 193–209 (2007). https://doi.org/10.15376/biores.2.2.193-209

    Article  Google Scholar 

  33. Nabais, J.M.V., Laginhas, C., Carrott, M.M.L.R., Carrott, P.J.M., Amorós, J.E.C., Gisbert, A.V.N.: Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Appl. Surf. Sci. 265, 919–924 (2013). https://doi.org/10.1016/j.apsusc.2012.11.164

    Article  Google Scholar 

  34. Falco, C., Marco-Lozar, J.P., Salinas-Torres, D., Morallón, E., Cazorla-Amorós, D., Titirici, M.M., Lozano-Castelló, D.: Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon N. Y. 62, 346–355 (2013). https://doi.org/10.1016/j.carbon.2013.06.017

    Article  Google Scholar 

  35. Kalderis, D., Bethanis, S., Paraskeva, P., Diamadopoulos, E.: Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour. Technol. 99, 6809–6816 (2008). https://doi.org/10.1016/j.biortech.2008.01.041

    Article  Google Scholar 

  36. Kaghazchi, T., Kolur, N.A., Soleimani, M.: Licorice residue and pistachio-nut shell mixture: a promising precursor for activated carbon. J. Ind. Eng. Chem. 16, 368–374 (2010). https://doi.org/10.1016/j.jiec.2009.10.002

    Article  Google Scholar 

  37. Heschel, W., Klose, E.: On the suitability of agricultural by-products for the manufacture of granular activated carbon. Fuel. 74, 1786–1791 (1995). https://doi.org/10.1016/0016-2361(95)80009-7

    Article  Google Scholar 

  38. Guo, F., Fang, Z.: Shape-controlled synthesis of activated bio-chars by surfactant-templated ionothermal carbonization in acidic ionic liquid and activation with carbon dioxide. BioResources. 9, 3369–3383 (2014). https://doi.org/10.15376/biores.9.2.3369-3383

    Article  Google Scholar 

  39. Yagmur, E., Ozmak, M., Aktas, Z.: A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel. 87, 3278–3285 (2008). https://doi.org/10.1016/j.fuel.2008.05.005

    Article  Google Scholar 

  40. Suzuki, R.M., Andrade, A.D., Sousa, J.C., Rollemberg, M.C.: Preparation and characterization of activated carbon from rice bran. Bioresour. Technol. 98, 1985–1991 (2007). https://doi.org/10.1016/j.biortech.2006.08.001

    Article  Google Scholar 

  41. Diao, Y., Walawender, W., Fan, L.: Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresour. Technol. 81, 45–52 (2002). https://doi.org/10.1016/S0960-8524(01)00100-6

    Article  Google Scholar 

  42. Zhao, L., Fan, L.Z., Zhou, M.Q., Guan, H., Qiao, S., Antonietti, M., Titirici, M.M.: Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 22, 5202–5206 (2010). https://doi.org/10.1002/adma.201002647

    Article  Google Scholar 

  43. Lozano-Castelló, D., Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Preparation of activated carbons from Spanish anthracite I. Activation by KOH. Carbon N. Y. 39, 741–749 (2001). https://doi.org/10.1016/S0008-6223(00)00185-8

    Article  Google Scholar 

  44. Lillo-Ródenas, M., Cazorla-Amorós, D., Linares-Solano, A., Rodenas, M., Amoros, D., Solano, A.: Understanding chemical reactions between carbons and NaOH and KOH An insight into the chemical activation mechanism. Carbon N. Y. 41, 267–275 (2003). https://doi.org/10.1016/S0008-6223(02)00279-8

    Article  Google Scholar 

  45. Prahas, D., Kartika, Y., Indraswati, N., Ismadji, S.: Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem. Eng. J. 140, 32–42 (2008). https://doi.org/10.1016/j.cej.2007.08.032

    Article  Google Scholar 

  46. Lim, W.C., Srinivasakannan, C., Balasubramanian, N.: Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis. 88, 181–186 (2010). https://doi.org/10.1016/j.jaap.2010.04.004

    Article  Google Scholar 

  47. Tay, T., Ucar, S., Karagöz, S.: Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater. 165, 481–485 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.011

    Article  Google Scholar 

  48. Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S., Ruangviriyachai, C.: Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem. Eng. Res. Des. 89, 335–340 (2011). https://doi.org/10.1016/j.cherd.2010.06.012

    Article  Google Scholar 

  49. Fu, K., Yue, Q., Gao, B., Sun, Y., Wang, Y., Li, Q., Zhao, P., Chen, S.: Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents. J. Taiwan Inst. Chem. Eng. 45, 3007–3015 (2014). https://doi.org/10.1016/j.jtice.2014.08.026

    Article  Google Scholar 

  50. Theydan, S.K., Ahmed, M.J.: Optimization of preparation conditions for activated carbons from date stones using response surface methodology. Powder Technol. 224, 101–108 (2012). https://doi.org/10.1016/j.powtec.2012.02.037

    Article  Google Scholar 

  51. Legrouri, K., Khouya, E., Ezzine, M., Hannache, H., Denoyel, R., Pallier, R., Naslain, R.: Production of activated carbon from a new precursor molasses by activation with sulphuric acid. J. Hazard. Mater. 118, 259–263 (2005). https://doi.org/10.1016/j.jhazmat.2004.11.004

    Article  Google Scholar 

  52. El-Hendawy, A.A.: An insight into KOH activation mechanism via production of microporous activated carbon for heavy metal removal. Egypt. J. Chem. 51, 681–700 (2008). https://doi.org/10.1016/j.apsusc.2008.10.034

    Article  Google Scholar 

  53. Hjaila, K., Baccar, R., Sarrà, M., Gasol, C.M., Blánquez, P.: Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment. J. Environ. Manag. 130, 242–247 (2013). https://doi.org/10.1016/j.jenvman.2013.08.061

    Article  Google Scholar 

  54. Lim, W.C., Srinivasakannan, C., Al Shoaibi, A.: Cleaner production of porous carbon from palm shells through recovery and reuse of phosphoric acid. J. Clean. Prod. 102, 501–511 (2015). https://doi.org/10.1016/j.jclepro.2015.04.100

    Article  Google Scholar 

  55. Sevilla, M., Fuertes, A.B.: A green approach to high-performance supercapacitor electrodes: the chemical activation of hydrochar with potassium bicarbonate. ChemSusChem. 9, 1880–1888 (2016). https://doi.org/10.1002/cssc.201600426

    Article  Google Scholar 

  56. Gong, Y., Wei, Z., Wang, J., Zhang, P., Li, H., Wang, Y.: Design and fabrication of hierarchically porous carbon with a template-free method. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep06349

    Article  Google Scholar 

  57. Khalili, N.R., Campbell, M., Sandi, G., Golaś, J.: Production of micro- and mesoporous activated carbon from paper mill sludge. I. Effect of zinc chloride activation. Carbon N. Y. 38, 1905–1915 (2000). https://doi.org/10.1016/S0008-6223(00)00043-9

    Article  Google Scholar 

  58. Bouchelta, C., Medjram, M.S., Bertrand, O., Bellat, J.P.: Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis. 82, 70–77 (2008). https://doi.org/10.1016/j.jaap.2007.12.009

    Article  Google Scholar 

  59. Rodríguez-Reinoso, F., Molina-Sabio, M.: Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon N. Y. 30, 1111–1118 (1992). https://doi.org/10.1016/0008-6223(92)90143-K

    Article  Google Scholar 

  60. Xin-Hui, D., Srinivasakannan, C., Jin-Hui, P., Li-Bo, Z., Zheng-Yong, Z.: Preparation of activated carbon from Jatropha hull with microwave heating: optimization using response surface methodology. Fuel Process. Technol. 92, 394–400 (2011). https://doi.org/10.1016/j.fuproc.2010.09.033

    Article  Google Scholar 

  61. Wigmans, T.: Industrial aspects of production and use of activated carbons. Carbon N. Y. 27, 13–22 (1989). https://doi.org/10.1016/0008-6223(89)90152-8

    Article  Google Scholar 

  62. Jain, A., Balasubramanian, R., Srinivasan, M.P.: Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2015.08.014

    Article  Google Scholar 

  63. Gao, Z., Zhang, Y., Song, N., Li, X.: Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 5, 69–88 (2017). https://doi.org/10.1080/21663831.2016.1250834

    Article  Google Scholar 

  64. Li, B., Dai, F., Xiao, Q., Yang, L., Shen, J., Zhang, C., Cai, M.: Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102–106 (2016). https://doi.org/10.1039/c5ee03149d

    Article  Google Scholar 

  65. Occelli, M.L., Olivier, J.P., Peridon-Melon, J.A., Auroux, A.: Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (DFT) and adsorption microcalorimetry methods. Langmuir. 18, 9816–9823 (2002). https://doi.org/10.1021/la020567o

    Article  Google Scholar 

  66. Barbieri, O., Hahn, M., Herzog, A., Kötz, R.: Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon N. Y. 43, 1303–1310 (2005). https://doi.org/10.1016/j.carbon.2005.01.001

    Article  Google Scholar 

  67. Wang, D.W., Li, F., Liu, M., Lu, G.Q., Cheng, H.M.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chemie - Int. Ed. 47, 373–376 (2008). https://doi.org/10.1002/anie.200702721

    Article  Google Scholar 

  68. Liu, C., Yan, X., Hu, F., Gao, G., Wu, G., Yang, X.: Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv. Mater. 30, 1–14 (2018). https://doi.org/10.1002/adma.201705713

    Article  Google Scholar 

  69. Demir, M., Saraswat, S.K., Gupta, R.B.: Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors. RSC Adv. 7, 42430–42442 (2017). https://doi.org/10.1039/c7ra07984b

    Article  Google Scholar 

  70. Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., Simon, P.: Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008). https://doi.org/10.1021/ja7106178

    Article  Google Scholar 

  71. Jäckel, N., Rodner, M., Schreiber, A., Jeongwook, J., Zeiger, M., Aslan, M., Weingarth, D., Presser, V.: Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. J. Power Sources. 326, 660–671 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.015

    Article  Google Scholar 

  72. Endo, M., Maeda, T., Takeda, T., Kim, Y.J., Koshiba, K., Hara, H., Dresselhaus, M.S.: Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 148, A910 (2002). https://doi.org/10.1149/1.1382589

    Article  Google Scholar 

  73. Salitra, G., Soffer, A., Eliad, L., Cohen, Y., Aurbach, D.: Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 2486 (2000). https://doi.org/10.1149/1.1393557

    Article  Google Scholar 

  74. Zuliani, J.E., Tong, S., Kirk, D.W., Jia, C.Q.: Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke. J. Power Sources. 300, 190–198 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.030

    Article  Google Scholar 

  75. Jäckel, N., Simon, P., Gogotsi, Y., Presser, V.: Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett. 1, 1262–1265 (2016). https://doi.org/10.1021/acsenergylett.6b00516

    Article  Google Scholar 

  76. Barczak, M., Elsayed, Y., Jagiello, J., Bandosz, T.J.: Exploring the effect of ultramicropore distribution on gravimetric capacitance of nanoporous carbons. Electrochim. Acta 275, 236–247 (2018). https://doi.org/10.1016/j.electacta.2018.04.035

    Article  Google Scholar 

  77. Redondo, E., Carretero-González, J., Goikolea, E., Ségalini, J., Mysyk, R.: Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim. Acta 160, 178–184 (2015). https://doi.org/10.1016/j.electacta.2015.02.006

    Article  Google Scholar 

  78. Sevilla, M., Fuertes, A.B.: Catalytic graphitization of templated mesoporous carbons. Carbon N. Y. 44, 468–474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019

    Article  Google Scholar 

  79. Hsieh, C.T., Teng, H.: Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon N. Y. 40, 667–674 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8

    Article  Google Scholar 

  80. Lota, G., Grzyb, B., Machnikowska, H., Machnikowski, J., Frackowiak, E.: Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem. Phys. Lett. 404, 53–58 (2005). https://doi.org/10.1016/j.cplett.2005.01.074

    Article  Google Scholar 

  81. Kiciński, W., Szala, M., Bystrzejewski, M.: Sulfur-doped porous carbons: synthesis and applications. Carbon N. Y. 68, 1–32 (2014). https://doi.org/10.1016/j.carbon.2013.11.004

    Article  Google Scholar 

  82. Qu, D.: Studies of the activated carbons used in double-layer supercapacitors. J. Power Sour. 109, 403–411 (2002). https://doi.org/10.1016/S0378-7753(02)00108-8

    Article  Google Scholar 

  83. Jung, A., Han, S., Kim, T., Cho, W.J., Lee, K.H.: Synthesis of high carbon content microspheres using 2-step microwave carbonization, and the influence of nitrogen doping on catalytic activity. Carbon N. Y. 60, 307–316 (2013). https://doi.org/10.1016/j.carbon.2013.04.042

    Article  Google Scholar 

  84. Hu, C., Dai, L.: Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 1804672, 1804672 (2018). https://doi.org/10.1002/adma.201804672

    Article  Google Scholar 

  85. Hoekman, S.K., Broch, A., Robbins, C.: Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels. 25, 1802–1810 (2011). https://doi.org/10.1021/ef101745n

    Article  Google Scholar 

  86. Kumabe, K., Itoh, N., Matsumoto, K., Hasegawa, T.: Hydrothermal gasification of glucose and starch in a batch and continuous reactor. Energy Rep. 3, 70–75 (2017). https://doi.org/10.1016/j.egyr.2017.04.001

    Article  Google Scholar 

  87. Zhao, Y., Singh, A.K., Jang, S., Wang, A., Kim, D.P.: Continuous-flow synthesis of functional carbonaceous particles from biomass under hydrothermal carbonization. J. Flow Chem. 4, 195–199 (2014). https://doi.org/10.1556/JFC-D-14-00018

    Article  Google Scholar 

  88. Hoekman, S.K., Broch, A., Felix, L., Farthing, W.: Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder. Energy Convers. Manag. 134, 247–259 (2017). https://doi.org/10.1016/j.enconman.2016.12.035

    Article  Google Scholar 

  89. Hoekman, S.K., Broch, A., Robbins, C., Purcell, R., Zielinska, B., Felix, L., Irvin, J.: Process Development Unit (PDU) for hydrothermal carbonization (HTC) of lignocellulosic biomass. Waste and Biomass Valorization. 5, 669–678 (2014). https://doi.org/10.1007/s12649-013-9277-0

    Article  Google Scholar 

  90. Köchermann, J., Görsch, K., Wirth, B., Mühlenberg, J., Klemm, M.: Hydrothermal carbonization: temperature influence on hydrochar and aqueous phase composition during process water recirculation. J. Environ. Chem. Eng. 6, 5481–5487 (2018). https://doi.org/10.1016/j.jece.2018.07.053

    Article  Google Scholar 

  91. Kabadayi Catalkopru, A., Kantarli, I.C., Yanik, J.: Effects of spent liquor recirculation in hydrothermal carbonization. Bioresour. Technol. 226, 89–93 (2017). https://doi.org/10.1016/j.biortech.2016.12.015

    Article  Google Scholar 

  92. Reza, M.T., Lynam, J.G., Uddin, M.H., Coronella, C.J.: Hydrothermal carbonization: fate of inorganics. Biomass and Bioenergy. 49, 86–94 (2013). https://doi.org/10.1016/j.biombioe.2012.12.004

    Article  Google Scholar 

  93. Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod. Biorefining. 4, 160–177 (2010). https://doi.org/10.1002/bbb.198

    Article  Google Scholar 

  94. Heidari, M., Dutta, A., Acharya, B., Mahmud, S.: A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. (2018). https://doi.org/10.1016/j.joei.2018.12.003

    Article  Google Scholar 

  95. Khan, T.A., Saud, A.S., Jamari, S.S., Rahim, M.H.A., Park, J.W., Kim, H.J.: Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass and Bioenergy. 130, 105384 (2019). https://doi.org/10.1016/j.biombioe.2019.105384

    Article  Google Scholar 

  96. Barskov, S., Zappi, M., Buchireddy, P., Dufreche, S., Guillory, J., Gang, D., Hernandez, R., Bajpai, R., Baudier, J., Cooper, R., Sharp, R.: Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew. Energy. 142, 624–642 (2019). https://doi.org/10.1016/j.renene.2019.04.068

    Article  Google Scholar 

  97. Rodriguez Correa, C., Kruse, A.: Supercritical water gasification of biomass for hydrogen production—review. J. Supercrit. Fluids 133, 573–590 (2018). https://doi.org/10.1016/j.supflu.2017.09.019

    Article  Google Scholar 

  98. Luo, L., Chen, T., Zhao, W., Fan, M.: Hydrothermal doping of nitrogen in bamboo-based super activated carbon for hydrogen storage. BioResources. 12, 6237–6250 (2017). https://doi.org/10.15376/biores.12.3.6237-6250

    Article  Google Scholar 

  99. Luo, L., Xu, C., Chen, Z., Zhang, S.: Properties of biomass-derived biochars: combined effects of operating conditions and biomass types. Bioresour. Technol. 192, 83–89 (2015). https://doi.org/10.1016/j.biortech.2015.05.054

    Article  Google Scholar 

  100. Lee, J.S., Mayes, R.T., Luo, H., Dai, S.: Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon N. Y. 48, 3364–3368 (2010). https://doi.org/10.1016/j.carbon.2010.05.027

    Article  Google Scholar 

  101. Hossain, M.M.: Promotional effects of Ce on Ni–Ce/ΓAl2O3 for enhancement of H2 in hydrothermal gasification of biomass. Int. J. Hydrogen Energy 43, 6088–6095 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.182

    Article  Google Scholar 

  102. Jiao, J.L., Wang, F., Duan, P.G., Xu, Y.P., Yan, W.H.: Catalytic hydrothermal gasification of microalgae for producing hydrogen and methane-rich gas. Energy Sour. Part A Recover Util. Environ. Eff. 39, 851–860 (2017). https://doi.org/10.1080/15567036.2016.1270375

    Article  Google Scholar 

  103. Sert, M., Selvi Gökkaya, D., Cengiz, N., Ballice, L., Yüksel, M., Sağlam, M.: Hydrogen production from olive-pomace by catalytic hydrothermal gasification. J. Taiwan Inst. Chem. Eng. 83, 90–98 (2018). https://doi.org/10.1016/j.jtice.2017.11.026

    Article  Google Scholar 

  104. Watson, J., Si, B., Li, H., Liu, Z., Zhang, Y.: Influence of catalysts on hydrogen production from wastewater generated from the HTL of human feces via catalytic hydrothermal gasification. Int. J. Hydrogen Energy 42, 20503–20511 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.083

    Article  Google Scholar 

  105. Chen, J., Wang, L., Zhang, B., Li, R., Shahbazi, A.: Hydrothermal liquefaction enhanced by various chemicals as a means of sustainable dairy manure treatment. Sustainability. 10, 230 (2018). https://doi.org/10.3390/su10010230

    Article  Google Scholar 

  106. Lu, X., Flora, J.R.V., Berge, N.D.: Influence of process water quality on hydrothermal carbonization of cellulose. Bioresour. Technol. 154, 229–239 (2014). https://doi.org/10.1016/j.biortech.2013.11.069

    Article  Google Scholar 

  107. Reza, M.T., Rottler, E., Herklotz, L., Wirth, B.: Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour. Technol. 182, 336–344 (2015). https://doi.org/10.1016/j.biortech.2015.02.024

    Article  Google Scholar 

  108. Lu, Y., Mosier, N.S.: Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnol. Bioeng. 101, 1170–1181 (2008). https://doi.org/10.1002/bit.22008

    Article  Google Scholar 

  109. Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G.: A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247 (2018). https://doi.org/10.1016/j.rser.2018.03.071

    Article  Google Scholar 

  110. Dapsens, P.Y., Mondelli, C., Pérez-Ramírez, J.: Biobased chemicals from conception toward industrial reality: lessons learned and to be learned. ACS Catal. 2, 1487–1499 (2012). https://doi.org/10.1021/cs300124m

    Article  Google Scholar 

  111. Krylova, A.Y., Zaitchenko, V.M.: Hydrothermal carbonization of biomass: a review. Solid Fuel Chem. 52, 91–103 (2018). https://doi.org/10.3103/S0361521918020076

    Article  Google Scholar 

  112. Kumar, M., Olajire Oyedun, A., Kumar, A.: A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 81, 1742–1770 (2018). https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  113. Titirici, M.M., White, R.J., Falco, C., Sevilla, M.: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. 5, 6796–6822 (2012). https://doi.org/10.1039/c2ee21166a

    Article  Google Scholar 

  114. Susanti, R.F., Arie, A.A., Kristianto, H., Erico, M., Kevin, G., Devianto, H.: Activated carbon from citric acid catalyzed hydrothermal carbonization and chemical activation of salacca peel as potential electrode for lithium ion capacitor’s cathode. Ionics. 25, 3915–3925 (2019). https://doi.org/10.1007/s11581-019-02904-x

    Article  Google Scholar 

  115. Gan, L., Zhu, J., Lv, L.: Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization. Cellulose. 24, 5327–5339 (2017). https://doi.org/10.1007/s10570-017-1515-3

    Article  Google Scholar 

  116. Zhou, N., Chen, H., Feng, Q., Yao, D., Chen, H., Wang, H., Zhou, Z., Li, H., Tian, Y., Lu, X.: Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean. Prod. 165, 221–230 (2017). https://doi.org/10.1016/j.jclepro.2017.07.111

    Article  Google Scholar 

  117. Zhao, Q., Tao, S., Miao, X., Zhu, Y.: A green, rapid, scalable and versatile hydrothermal strategy to fabricate monodisperse carbon spheres with tunable micrometer size and hierarchical porosity. Chem. Eng. J. 372, 1164–1173 (2019). https://doi.org/10.1016/j.cej.2019.05.014

    Article  Google Scholar 

  118. Fechler, N., Wohlgemuth, S.A., Jäker, P., Antonietti, M.: Salt and sugar: direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions. J. Mater. Chem. A. 1, 9418–9421 (2013). https://doi.org/10.1039/c3ta10674h

    Article  Google Scholar 

  119. Lynam, J.G., Coronella, C.J., Yan, W., Reza, M.T., Vasquez, V.R.: Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 102, 6192–6199 (2011). https://doi.org/10.1016/j.biortech.2011.02.035

    Article  Google Scholar 

  120. Hamid, S.B.A., Teh, S.J., Lim, Y.S.: Catalytic hydrothermal upgrading of α-cellulose using iron salts as a lewis acid. BioResources. 10, 5974–5986 (2015). https://doi.org/10.15376/biores.10.3.5974-5986

    Article  Google Scholar 

  121. Liu, X., Antonietti, M.: Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon N. Y. 69, 460–466 (2014). https://doi.org/10.1016/j.carbon.2013.12.049

    Article  Google Scholar 

  122. Marsh, H., Crawford, D., Taylor, D.W.: Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol. Carbon N. Y. 21, 81–87 (1983). https://doi.org/10.1016/0008-6223(83)90160-4

    Article  Google Scholar 

  123. Yudasaka, M., Tasaka, K., Kikuchi, R., Ohki, Y., Yoshimura, S., Ota, E.: Influence of chemical bond of carbon on Ni catalyzed graphitization. J. Appl. Phys. 81, 7623–7629 (1997). https://doi.org/10.1063/1.365339

    Article  Google Scholar 

  124. Mochida, I., Ohtsubo, R., Takeshita, K., Marsh, H.: Catalytic graphitization of non-graphitizable carbon by chromium and manganese oxides. Carbon N. Y. 18, 117–123 (1980). https://doi.org/10.1016/0008-6223(80)90019-6

    Article  Google Scholar 

  125. García-Bordejé, E., Pires, E., Fraile, J.M.: Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. Carbon N. Y. 123, 421–432 (2017). https://doi.org/10.1016/j.carbon.2017.07.085

    Article  Google Scholar 

  126. Simsir, H., Eltugral, N., Karagoz, S.: Effects of acidic and alkaline metal triflates on the hydrothermal carbonization of glucose and cellulose. Energy & Fuels. 33, 7473–7479 (2019). https://doi.org/10.1021/acs.energyfuels.9b01750

    Article  Google Scholar 

  127. Rather, M.A., Khan, N.S., Gupta, R.: Catalytic hydrothermal carbonization of invasive macrophyte Hornwort (Ceratophyllum demersum) for production of hydrochar: a potential biofuel. Int. J. Environ. Sci. Technol. 14, 1243–1252 (2017). https://doi.org/10.1007/s13762-016-1227-5

    Article  Google Scholar 

  128. Lee, K.U., Kim, M.J., Park, K.J., Kim, M., Kwon, O.J., Kim, J.J.: Catalytic growth of a colloidal carbon sphere by hydrothermal reaction with iron oxide (Fe3O4) catalyst. Mater. Lett. 125, 213–217 (2014). https://doi.org/10.1016/j.matlet.2014.03.163

    Article  Google Scholar 

  129. Gu, L., Li, B., Wen, H., Zhang, X., Wang, L., Ye, J.: Co-hydrothermal treatment of fallen leaves with iron sludge to prepare magnetic iron product and solid fuel. Bioresour. Technol. 257, 229–237 (2018). https://doi.org/10.1016/j.biortech.2018.02.113

    Article  Google Scholar 

  130. Han, C., Wang, S., Wang, J., Li, M., Deng, J., Li, H., Wang, Y.: Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 7, 1809–1819 (2014). https://doi.org/10.1007/s12274-014-0540-x

    Article  Google Scholar 

  131. Kubo, S., White, R.J., Yoshizawa, N., Antonietti, M., Titirici, M.M.: Ordered carbohydrate-derived porous carbons. Chem. Mater. 23, 4882–4885 (2011). https://doi.org/10.1021/cm2020077

    Article  Google Scholar 

  132. Kubo, S., Demir-Cakan, R., Zhao, L., White, R.J., Titirici, M.M.: Porous carbohydrate-based materials via hard templating. ChemSusChem. 3, 188–194 (2010). https://doi.org/10.1002/cssc.200900126

    Article  Google Scholar 

  133. Krishnan, D., Raidongia, K., Shao, J., Huang, J.: Graphene oxide assisted hydrothermal carbonization of carbon hydrates. ACS Nano. 8, 449–457 (2014). https://doi.org/10.1021/nn404805p

    Article  Google Scholar 

  134. Hu, Y., Liu, H., Ke, Q., Wang, J.: Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J. Mater. Chem. A. 2, 11753–11758 (2014). https://doi.org/10.1039/c4ta01269k

    Article  Google Scholar 

  135. Xiao, P.W., Zhao, L., Sui, Z.Y., Xu, M.Y., Han, B.H.: Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method. Microporous Mesoporous Mater. 253, 215–222 (2017). https://doi.org/10.1016/j.micromeso.2017.07.001

    Article  Google Scholar 

  136. Xiao, P.W., Guo, D., Zhao, L., Han, B.H.: Soft templating synthesis of nitrogen-doped porous hydrothermal carbons and their applications in carbon dioxide and hydrogen adsorption. Microporous Mesoporous Mater. 220, 129–135 (2016). https://doi.org/10.1016/j.micromeso.2015.08.027

    Article  Google Scholar 

  137. Song, L.T., Wu, Z.Y., Liang, H.W., Zhou, F., Yu, Z.Y., Xu, L., Pan, Z., Yu, S.H.: Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 19, 117–127 (2016). https://doi.org/10.1016/j.nanoen.2015.10.004

    Article  Google Scholar 

  138. Wu, Q., Gao, M., Zhang, G., Zhang, Y., Liu, S., Xie, C., Yu, H., Liu, Y., Huang, L., Yu, S.: Preparation and application performance study of biomass-based carbon materials with various morphologies by a hydrothermal/soft template method. Nanotechnology. 30, 18572 (2019). https://doi.org/10.1088/1361-6528/ab0042

    Article  Google Scholar 

  139. Kruse, A., Koch, F., Stelzl, K., Wüst, D., Zeller, M.: Fate of nitrogen during hydrothermal carbonization. Energy Fuels. 30, 8037–8042 (2016). https://doi.org/10.1021/acs.energyfuels.6b01312

    Article  Google Scholar 

  140. Wang, T., Zhai, Y., Zhu, Y., Wang, Z., Xiao, H., Peng, C., Wang, B., Li, C.: What is the influence of the nitrogen-containing composition during hydrothermal carbonization of biomass? A new perspective from mimic feedstock. Bioresour. Technol. Rep. 5, 343–350 (2019). https://doi.org/10.1016/j.biteb.2018.07.001

    Article  Google Scholar 

  141. Sevilla, M., Gu, W., Falco, C., Titirici, M.M., Fuertes, A.B., Yushin, G.: Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. J. Power Sour. 267, 26–32 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.046

    Article  Google Scholar 

  142. Gai, C., Guo, Y., Peng, N., Liu, T., Liu, Z.: N-Doped biochar derived from co-hydrothermal carbonization of rice husk and: Chlorella pyrenoidosa for enhancing copper ion adsorption. RSC Adv. 6, 53713–53722 (2016). https://doi.org/10.1039/c6ra09270e

    Article  Google Scholar 

  143. Hou, L., Hu, Z., Wang, X., Qiang, L., Zhou, Y., Lv, L., Li, S.: Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J. Colloid Interface Sci. 540, 88–96 (2019). https://doi.org/10.1016/j.jcis.2018.12.029

    Article  Google Scholar 

  144. Deng, P., Lei, S., Wang, W., Zhou, W., Ou, X., Chen, L., Xiao, Y., Cheng, B.: Conversion of biomass waste to multi-heteroatom-doped carbon networks with high surface area and hierarchical porosity for advanced supercapacitors. J. Mater. Sci. 53, 14536–14547 (2018). https://doi.org/10.1007/s10853-018-2630-8

    Article  Google Scholar 

  145. Sun, Y., Liu, C., Zan, Y., Miao, G., Wang, H., Kong, L.: Hydrothermal carbonization of microalgae (Chlorococcum sp.) for porous carbons with high Cr(VI) adsorption performance. Appl. Biochem. Biotechnol. 186, 414–424 (2018). https://doi.org/10.1007/s12010-018-2752-0

    Article  Google Scholar 

  146. Liu, H., Chen, Y., Yang, H., Gentili, F.G., Söderlind, U., Wang, X., Zhang, W., Chen, H.: Hydrothermal carbonization of natural microalgae containing a high ash content. Fuel. 249, 441–448 (2019). https://doi.org/10.1016/j.fuel.2019.03.004

    Article  Google Scholar 

  147. Jain, A., Balasubramanian, R., Srinivasan, M.P.: Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chem. Eng. J. 273, 622–629 (2015). https://doi.org/10.1016/j.cej.2015.03.111

    Article  Google Scholar 

  148. Schipper, F., Kubo, S., Fellinger, T.P.: Nitrogen-doped porous carbon via ammonothermal carbonization for supercapacitors. J. Sol–Gel. Sci. Technol. 89, 101–110 (2019). https://doi.org/10.1007/s10971-018-4837-1

    Article  Google Scholar 

  149. Ghanim, B.M., Kwapinski, W., Leahy, J.J.: Hydrothermal carbonisation of poultry litter: effects of initial pH on yields and chemical properties of hydrochars. Bioresour. Technol. 238, 78–85 (2017). https://doi.org/10.1016/j.biortech.2017.04.025

    Article  Google Scholar 

  150. Liu, S., Cai, Y., Zhao, X., Liang, Y., Zheng, M., Hu, H., Dong, H., Jiang, S., Liu, Y., Xiao, Y.: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J. Power Sour. 360, 373–382 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.029

    Article  Google Scholar 

  151. Choi, C.H., Chung, M.W., Park, S.H., Woo, S.I.: Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media. Phys. Chem. Chem. Phys. 15, 1802–1805 (2013). https://doi.org/10.1039/c2cp44147k

    Article  Google Scholar 

  152. Si, W., Zhou, J., Zhang, S., Li, S., Xing, W., Zhuo, S.: Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 107, 397–405 (2013). https://doi.org/10.1016/j.electacta.2013.06.065

    Article  Google Scholar 

  153. Wu, Q., Li, W., Liu, S., Jin, C.: Hydrothermal synthesis of N-doped spherical carbon from carboxymethylcellulose for CO2 capture. Appl. Surf. Sci. 369, 101–107 (2016). https://doi.org/10.1016/j.apsusc.2016.02.022

    Article  Google Scholar 

  154. Yu, W., Wang, H., Liu, S., Mao, N., Liu, X., Shi, J., Liu, W., Chen, S., Wang, X.: N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J. Mater. Chem. A. 4, 5973–5983 (2016). https://doi.org/10.1039/c6ta01821a

    Article  Google Scholar 

  155. Xing, X., Jiang, W., Li, S., Zhang, X., Wang, W.: Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl2 -H3 PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis. Waste Manag. 89, 64–72 (2019). https://doi.org/10.1016/j.wasman.2019.04.002

    Article  Google Scholar 

  156. Zhang, W., Yu, C., Chang, L., Zhong, W., Yang, W.: Electrochimica acta three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors. Electrochim. Acta 282, 642–652 (2018). https://doi.org/10.1016/j.electacta.2018.06.100

    Article  Google Scholar 

  157. Tan, J., Chen, H., Gao, Y., Li, H.: Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance. Electrochim. Acta 178, 144–152 (2015). https://doi.org/10.1016/j.electacta.2015.08.008

    Article  Google Scholar 

  158. Titirici, M.M., Thomas, A., Antonietti, M.: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6), 787–789 (2007)

    Article  Google Scholar 

  159. Cui, X., Antonietti, M., Yu, S.H.: Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small. 2, 756–759 (2006). https://doi.org/10.1002/smll.200600047

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank supporting organizations, The Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and the University of Guelph for ongoing HQP training support.

Funding

This work was funded by the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2015-05093) and Biomass Canada of BioFuelNet Canada Network (Grant No. Project Number: ASC-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacDermid-Watts, K., Pradhan, R. & Dutta, A. Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste Biomass Valor 12, 2171–2186 (2021). https://doi.org/10.1007/s12649-020-01134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01134-x

Keywords

Navigation