Skip to main content

Advertisement

Log in

Water Hyacinth as Non-edible Source for Biofuel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Water hyacinth (Eichhornia crassipes) represents a promising source for biofuel production and other bioactive compounds because of their high availability and high biomass yield. The present work aims to determine the possibility for biofuel production and other active compounds from seasonally collected water hyacinth. The water hyacinth samples were collected at four seasons (2014/2015) from River Nile, Giza, Egypt, and the biofuel (biodiesel and bioethanol), lipids, glycerol content, carbohydrates and other biochemical compounds were determined in addition to physico-chemically characterized of produced biodiesel The obtained results indicated that, water hyacinth samples showed variable lipid contents (6.79–10.45%), which by transesterification produced biodiesels (3.22–6.36%) and sediment (pigments+glycerol). Biodiesel composed either totally of saturated fatty acids (Myristic acid) of winter and autumn samples, However, Myristic and Stearic acids with small proportion of pentadecanoic acid of summer and spring samples by 8.1 and 7.9% respectively. The monounsaturated fatty acid, Oleic, was only recorded in the summer sample by11.6%. So biodiesels produced from water hyacinth have good stability and acceptability to be used in diesel engines, the co-products (sediment) composed of pigments and glycerol reached to 4.69 mg/g and 1.05 mmol/L respectively in winter season. Also, pretreatment of water hyacinth by acid at mild conditions was found to be effective with high yield of fermentable sugars and production of ethanol during 120–180 min for different seasonally collected plants. From the results, we can conclude that the produced biodiesel (from water hyacinth) was within the recommended standards and met the criteria required to be a diesel substitute compared with the Egyptian fuel standards In addition, it is possible to use its pigments as natural coloring substances in food industry, and glycerol can be incorporated in different petrochemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Majdalawi, M. I., El-Habbab, M. S. H., Al-Karablieh, E. K., Alassaf. A.: Economic and socioeconomics impact of biofuel production in the Arab Region. Afr. J. Agric. Res., 7(14), 2114–2123 (2012).

    Google Scholar 

  2. Chisti, Y.: Biodiesel from microalgae. Biotech. Adv., 25, 294–306 (2007).

    Article  Google Scholar 

  3. Chisti, Y.: Bio-diesel from algae beats bioethanol. Trends Biotechnol. 26, 126–131 (2008)

    Article  Google Scholar 

  4. Srinophakun, P., Thanapimmetha, A., Rattanaphanyapan, K., Sahaya, T., Saisriyoot, M.: Feedstock production for third generation biofuels through cultivation of Arthrobacter AK19 under stress conditions. J. Cleaner Prod., 142, 1259e1266 (2017).

    Google Scholar 

  5. Feng, W., Xiao, K., Zhou, W., Zhu, W., Zhou, Y., Yuan, Y., Xiao, N., Wan, X., Hua, Y., Zhao, J.: Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Biores. Techn., 223, 287–295 (2017).

    Article  Google Scholar 

  6. Shanab, S.M. M., Shalaby, E. A., Lightfoot, D. A. and El-Shemy, H. A.: Allelopathic effects of water hyacinth (Eichhornia crassipes). Plos ONE 5 (10), (2010).

  7. Shanab, S. M. M., Hanafy, E. A. and Shalaby, E. A.: Biodiesel production and antioxidant activity of different Egyptian Date Palm seed cultivars. Asian J. Biochem., 9 (3), 119–130. (2014).

    Article  Google Scholar 

  8. Shalaby, E. A. and Shanab, S. M. M.: Antiradical and Antioxidant Activities of different Spirulina platensis extracts against DPPH and ABTS Radical Assay. J. Marine Biol. Oceanogr. 2, 1–8. (2013).

  9. , Aboul-Enein, A. M., Shanab S. M. M., Shalaby E. A., Zahran M. M., Lightfoot D. A. and El-Shemy H. A.: Cytotoxic and Antioxidant properties of active principals isolated from water hyacinth against four cancer cell lines. BMC Compl. Alt. Med., 14, 397. (2014).

  10. Uday, U.S.P., Choudhury, P., Bandyopadhyay, T.K., Bhunia, B.: Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol. 82, 1041–1054 (2016)

    Article  Google Scholar 

  11. Das, A, Ghosh, P, Paul, T, Ghosh, U, Pati, B.R, Mondal, K.C.: Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech. 6 (1) (2016).

  12. Ruan, T, Zeng, R, Yin, X.Y, Zhang, S.X, Yang, Z.H.: Water Hyacinth (Eichhornia crassipes) Biomass as a Biofuel Feedstock by Enzymatic Hydrolysis. Bioresources, 11, 2372–2380 (2016).

    Article  Google Scholar 

  13. Rezania, S., Ponraj, M., Fadhil Md Din, M., Songip, A. R., Md Sairan, F., Chelliapan, S: The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew. Sustain. Energy Rev. 41, 943–954 (2015)

    Article  Google Scholar 

  14. Sagar, C. V., Kumari, N. A.: Sustainable biofuel production from water hyacinth (Eicchornia crassipes). Int. J. Eng. Trends Techn. 4(10), 4454–4458 (2013)

    Google Scholar 

  15. Bligh E.G. and Dyer W. J.: A rapid method for total lipid extraction and purification. Canad. J. Biochem. Physiol., 37, 911–917 (1959)

    Google Scholar 

  16. National Biodiesel Board.: “Biodiesel Emissions.” http://www.biodiesel.org/pdf_files/emissions.PDF (2002). Accessed July 2001.

  17. Shalaby, E.A., El-Gendy, N.: Two steps alkaline transesterification of waste cooking oils and quality assessment of produced biodiesel. Int. J. Chemical Biochemical Sci. 1, 30–35 (2012)

    Google Scholar 

  18. Farag, R. S., Hallaba, S. A., Hewedi, F. E and Basyony, A. E.: Chemical evalution of rapeseed. Fette Seifen Antrichmittel, 88, 391–397 (1986).

    Article  Google Scholar 

  19. Holden, M.: Chlorophyll, In chemistry and biochemistry of plant pigments. Goodwin, T. W. (ed.), Academic Press, London. (1965)

  20. Li, R., Keymeulen, B., Gerlo, E. Determination of glycerol in plasma by an automated enzymatic spectrophotometric procedure. Clin. Chem. Lab Med. 39(1), 20–24 (2001).

    Article  Google Scholar 

  21. Dubois, M., Smith, F., Gilles, K. A., Hamilton, J. K., Rebers, P.A., Gilles, K. A., Hamilton, J. K., Rebers, P.A.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  22. Gupta, R., Biswas, K. and Suthindhiran, I. M. K.: Ethanol Production from Marine Algae Using Yeast Fermentation. Res. Desk, 1(1).17–22 (2012).

    Google Scholar 

  23. Martin, S. F., Gilbert, J. C.: Organic Chemistry Lab Experiments: Miniscale and Microscale (5th ed., Int’l ed.). Brooks/Cole, Cengage Learning, Boston (2011)

    Google Scholar 

  24. Snedecor, G. W. and Cochran, W. G.: Statistical Methods. The Iowa State Univ. Press., Ames, USA. (1982).

    MATH  Google Scholar 

  25. Arayana, G. L., Rao, K. S., Pantulu, A. J., Thyagarajan, G.: Composition of lipids in roots, stalks, leaves and flowers of Eichhornia crassipes (Mart.) Solms. Aquat. Bot. 20(3–4), 219–227 (1984)

    Article  Google Scholar 

  26. Afify, A.M. M. R., Shalaby E. A. and Shanab S. M. M. (2010). Enhancement of biodiesel production from different species of algae. Grasas Y Aceites, 61 (4), 416–422 (2010).

    Article  Google Scholar 

  27. Shalaby, E.A., El-Gendy, N.: Two steps alkaline transesterification of waste cooking oils and quality assessment of produced biodiesel. Int. J. Chem. Biochem. Sci. 1, 30–35 (2012)

    Google Scholar 

  28. Sukenik, A., Yamaguchi, Y., Livne, A.: Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J. Phycol. 29, 620–626 (1993)

    Article  Google Scholar 

  29. Lamaisri, C., Punsuvon, V., Chanprame, S., Arunyanark, A., Srinives, P. and Liangsakul, P.: Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils Songklanakarin. J. Sci. Technol. 37 (4), 389–395 (2015).

    Google Scholar 

  30. Sarin, R., Sharma, M., Sinharay, S. and Malhotra R. K.: Jatropha-Plam biodiesel blends: an optimum mix for Asia. Fuels, 86, 1365–1371 (2007).

    Article  Google Scholar 

  31. Singh, A., Nigam, P. S. and Murphy, J. D. Renewable fuels from algae. An answer to debatable land based fuels. Biores. Technol., 102, 10–16 (2011).

    Article  Google Scholar 

  32. Lam, M. K., Lee, K. T.: Microalgae biofuels: a critical review of tissues, problems and the way forward. Biotechnol. Adv. 30, 673–690 (2012)

    Article  Google Scholar 

  33. Keera, S. T., El-Sabagh, S. M., Taman, A. R.: “Transesterfication of vegetable oil to biodiesel fuel using alkaline catalyst”. Fuel 90, 42–47 (2011)

    Article  Google Scholar 

  34. Chand, L., Mali, M., Singh, R.P.: Phytochemical study of Eichhornia crassipes in Sri Ganganagar District of Rajasthan, India. J. Pharmacogn. Phytochem. 3(4), 176–177 (2014)

    Google Scholar 

  35. Musil C.F., Midgley G.F. & Wand S.J.E.: Carry-over of enhanced ultraviolet-B exposure effects to successive generations of a desert annual: interaction with atmospheric CO2 and nutrient supply. Glob. Change Biol. 5, 311–329 (1999).

    Article  Google Scholar 

  36. KAI-SS, H.: Metabolism of isoflavidoside and osmotic balance in the fresh water alga Ochromonas. Nature 214, 1129–1131 (1967)

    Article  Google Scholar 

  37. Yan, J., Wei, Z., Wang, Q., He, M., Li, S. and Irbis, C.: Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermo tolerant Kluyveromyces marxianu strain. Biores. Technol., 193, 103–109 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was fully supported by a grant from the Science and Technology Development Fund (STDF-Project ID: 312), Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad A. Shalaby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanab, S.M.M., Hanafy, E.A. & Shalaby, E.A. Water Hyacinth as Non-edible Source for Biofuel Production. Waste Biomass Valor 9, 255–264 (2018). https://doi.org/10.1007/s12649-016-9816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9816-6

Keywords

Navigation