Skip to main content
Log in

Diffusion models with microstructure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Models of diffusion are presented which recognize the local geometry of individual cells or storage sites and the exchange of flux on the micro-scale of these cells. Such models have been obtained by homogenization, but here we indicate stronger existence-uniqueness results of “parabolic” type can be obtained directly. Connections between these models and their historical development will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Anzelius, Über Erwärmung vermittels durchströmender Medien, Zeit. Ang. Math. Mech., 6 (1926), 291–294.

    Google Scholar 

  2. T. Arbogast, Analysis of the simulation of single phase flow through a naturally fractured reservoir, SIAM J. Numer. Anal., 26 (1989), 12–29.

    Google Scholar 

  3. T. Arbogast, The double porosity model for single phase flow in naturally fractured reservoirs, Inst. Math. Appl., 295 (1987).

  4. T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823–836.

    Google Scholar 

  5. T. Arbogast, J. Douglas, U. Hornung, Modeling of naturally fractured reservoirs by formal homogenization techniques, to appear.

  6. G.I. Barenblatt, I.P. Zheltov, I.N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. and Mech., 24 (1960), 1286–1303.

    Google Scholar 

  7. J.A. Barker, Block-geometry functions characterizing transport in densely fissured media, J. of Hydrology, 77 (1985), 263–279.

    Google Scholar 

  8. M. Böhm and R.E. Showalter, Diffusion in fissured media, SIAM J. Math. Anal., 16 (1985), 500–509.

    Google Scholar 

  9. M. Böhm and R.E. Showalter, A nonlinear pseudoparabolic diffusion equation, Siam J. Math. Anal., 16 (1985), 980–999.

    Google Scholar 

  10. J.R. Cannon, The One-Dimensional Heat Equation, in “Encyclopedia of Mathematics and its Applications”, G.-C. Rota, ed., Addison-Wesley, Reading, Mass., 1984.

    Google Scholar 

  11. R.W. Carroll and R.E. Showalter, “Singular and Degenerate Cauchy Problems”, Academic Press, New York, 1976.

    Google Scholar 

  12. E. Charlaix, J.P. Hulin, T.J. Plona, Experimental study of tracer disperion in sintered glass porous materials of variable compation, Phys. Fluids, 30 (1987), 1690–1698.

    CAS  PubMed  Google Scholar 

  13. K.H. Coats, B.D. Smith, Dead-end pore volume and dispersion in porous media, Trans. Soc. Petr. Eng., 231 (1964), 73–84.

    Google Scholar 

  14. H.A. Deans, A mathematical model for dispersion in the direction of flow in porous media, Trans. Soc. Petr. Eng., 228 (1963), 49–52.

    Google Scholar 

  15. E. DiBenedetto and R.E. Showalter, A pseudo-parabolic variational inequality and Stefan problem, J. Nonlinear Anal., 6 (1982), 279–291.

    Google Scholar 

  16. E. DiBenedetto and R.E. Showalter, A free-boundary problem for a degenerate parabolic system, Jour. Diff. Eqn., 50 (1983), 1–19.

    Google Scholar 

  17. P.F. Diesler Jr. and R.H. Wilhelm, Diffusion in beds of porous solids: measurement by frequency response techniques, Ind. Eng. Chem. 45 (1953), 1219–1227.

    Google Scholar 

  18. J. Douglas, P.J. Paes Leme, T. Arbogast, T. Schmitt, Simulation of flow in naturally fractured reservoirs, in Proceedings, Ninth SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, 1987, pp. 271–279, Paper SPE 16019.

    Google Scholar 

  19. C.J. van Duijn and P. Knabner, Solute transport through porous media with slow adsorption, to appear.

  20. A. Friedman, A. Tzavaras, A quasilinear parabolic system arising in modelling of catalytic reactors, Jour. Diff. Eqns., 70 (1987), 167–196.

    Google Scholar 

  21. M.Th. van Genuchten, F.N. Dalton, Models for simulating salt movement in aggregated field soils, Geoderma, 38 (1986), 165–183.

    Google Scholar 

  22. M.Th. van Genuchten, P.J. Wierenga, Mass transfer studies in sorbing porous media I. Analytical Solutions, Soil Sci. Soc. Amer. J., 40 (1976), 473–480.

    Google Scholar 

  23. G. Gripenberg, Volterra integro-differential equations with accretive nonlinearity, Journ. Diff. Eqns., 60 (1985), 57–79.

    Google Scholar 

  24. U. Hornung, Miscible displacement in porous media influenced by mobile and immobile water, Rocky Mountais J. Mathem., to appear.

  25. U. Hornung and W. Jäger, A model for chemical reactions in porous media, in “Complex Chemical Reactions, Modeling and Simulation” (J. Warnatz, W. Jäger, eds.), Chemical Physics, Springer, Berlin, 1987.

    Google Scholar 

  26. U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differ. Equat., to appear.

  27. U. Hornung and R.E. Showalter, Diffusion models for fractured media, Jour. Math. Anal. Appl., 147 (1990), 69–80.

    Google Scholar 

  28. F.T. Lindstrom, M.N.L. Narasimham, Mathematical theory of a kinetic model for dispersion of previously distributed chemicals in a sorbing porous medium, SIAM J. Appl. Math., 24 (1973), 496–510.

    Google Scholar 

  29. A.N. Lowan, On the problem of the heat recuperator, Phil. Mag. 17 (1934), 914–933.

    Google Scholar 

  30. E.A. Milne, The diffusion of imprisoned radiation through a gas, Jour. London Math. Soc., 1 (1926), 40–51.

    Google Scholar 

  31. J.B. Rosen, Kinetics of a fixed bed system for solid diffusion into spherical particles, J. Chem. Phys., 20 (1952), 387–394.

    Google Scholar 

  32. J.B. Rosen and W.E. Winshe, The admittance concept in the kinetics of chromatography, J. Chem. Phys., 18 (1950), 1587–1592.

    Google Scholar 

  33. L.I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous media, Izv. Akad. Nauk SSSR, Ser. Geogr., 1 (1948).

  34. J. Rulla and R.E. Showalter, Diffusion with prescribed convection in fissured media, Diff. and Integral Equations, 1 (1988), 315–325.

    Google Scholar 

  35. R.E. Showalter, Local regularity, boundary values and maximum principles for pseudoparabolic equations, Applicable Analysis, 16 (1983), 235–241.

    Google Scholar 

  36. R.E. Showalter, The fissured medium equation, in “Physical Mathematics and Nonlinear Partial Differential Equations,” J.H. Lightbourne, III and S.M. Rankin, III, eds., Marcel Dekker, New York, 1985.

    Google Scholar 

  37. R.E. Showalter and N.J. Walkington, A diffusion system for fluid in fractured media, Differential and Integral Eqns., 3 (1990), 219–236.

    Google Scholar 

  38. R.E. Showalter and N.J. Walkington, Micro-structure models of diffusion in fissured media, Jour. Math. Anal. Appl., to appear.

  39. R.E. Showalter and N.J. Walkington, Diffusion of fluid in a fissured medium with micro-structure, to appear.

  40. Ch. Vogt, A homogenization theorem leading to a Volterra integro-differential equation for permeation chromotography, preprint #155, SFB 123, Heidelberg, 1982.

  41. J.E. Warren, P.J. Root, The behavior of naturally fractured reservoirs, Soc. Petr. Eng. J., 3 (1963), 245–255.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Showalter, R.E. Diffusion models with microstructure. Transp Porous Med 6, 567–580 (1991). https://doi.org/10.1007/BF00137850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00137850

Key words

Navigation