Skip to main content
Log in

Comparing Radiative Transfer Codes and Opacity Samplings for Solar Irradiance Reconstructions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Some techniques developed to reproduce solar irradiance variations make use of synthetic radiative fluxes of quiet and magnetic features. The synthesis of radiative fluxes of astronomical objects is likely to be affected by uncertainties resulting from approximations and specific input employed for the synthesis. In this work we compare spectra obtained with three radiative transfer codes with the purpose of investigating differences in reproducing solar irradiance variations. Specifically, we compare spectral synthesis produced in non-local thermodynamic equilibrium obtained with COSI and RH using 1-D atmosphere models. We also compare local thermodynamic equilibrium syntheses emerging from 3-D MURaM simulations of the solar atmosphere obtained with two sets of opacity tables generated with the ATLAS9 package and with the RH code, and test the effects of opacity sampling on the emergent spectra. We find that, although the different codes and methodologies employed to synthesize the spectrum reproduce overall the observed solar spectrum with a similar degree of accuracy, subtle differences in quiet Sun spectra may translate into larger differences in the computation of the contrasts of magnetic features, which, in turn, critically affect the estimates of solar variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allende Prieto, C.: 2009, Computing solar absolute fluxes. Astrophys. Space Sci. Proc.7, 199. ADS .

    ADS  Google Scholar 

  • Allende Prieto, C., Hubeny, I., Lambert, D.L.: 2003, Non-LTE model atmospheres for late-type stars. II. Restricted non-LTE calculations for a solar-like atmosphere. Astrophys. J.591, 1192. DOI . ADS .

    Article  ADS  Google Scholar 

  • Avrett, E.H., Loeser, R.: 1992, The PANDORA atmosphere program (Invited Review). In: Giampapa, M.S., Bookbinder, J.A. (eds.) Cool Stars, Stellar Systems, and the Sun, Astronomical Society of the Pacific Conference Series26, 489. ADS .

    Google Scholar 

  • Ball, W.T., Krivova, N.A., Unruh, Y.C., Haigh, J.D., Solanki, S.K.: 2014, A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21 – 23 and its implications for stratospheric ozone. J. Atmos. Sci.71, 4086. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ball, W.T., Schmutz, W., Fehlmann, A., Finsterle, W., Walter, B.: 2016, Assessing the beginning to end-of-mission sensitivity change of the PREcision MOnitor Sensor total solar irradiance radiometer (PREMOS/PICARD). J. Space Weather Space Clim.6(27), A32. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bruls, J.H.M.J., Rutten, R.J., Shchukina, N.G.: 1992, The formation of helioseismology lines. I – NLTE effects in alkali spectra. Astron. Astrophys.265, 237. ADS .

    ADS  Google Scholar 

  • Busá, I., Andretta, V., Gomez, M.T., Terranegra, L.: 2001, A method to estimate the effect of line blanketing in NLTE radiative transfer calculations. Astron. Astrophys.373, 993. DOI . ADS .

    Article  ADS  Google Scholar 

  • Carbon, D.F.: 1974, A comparison of the straight-mean harmonic-mean and multiple-picket approximations for the line opacities in cool model atmospheres. Astrophys. J.187, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Castelli, F.: 2005, DFSYNTHE: how to use it. Mem. Soc. Astron. Ital. Suppl.8, 34. ADS .

    ADS  Google Scholar 

  • Castelli, F., Kurucz, R.L.: 2003, New grids of ATLAS9 model atmospheres. In: Piskunov, N., Weiss, W.W., Gray, D.F. (eds.) Modelling of Stellar Atmospheres, IAU Symposium210, A20. ADS .

    Google Scholar 

  • Castelli, F., Kurucz, R.L.: 2004, Is missing Fe I opacity in stellar atmospheres a significant problem? Astron. Astrophys.419, 725. DOI . ADS .

    Article  ADS  Google Scholar 

  • Criscuoli, S.: 2019, Effects of continuum fudging on non-LTE synthesis of stellar spectra. I. Effects on estimates of UV continua and solar spectral irradiance variability. Astrophys. J.872, 52. DOI . ADS .

    Article  ADS  Google Scholar 

  • Criscuoli, S., Foukal, P.: 2017, A study of solar photospheric temperature gradient variation using limb darkening measurements. Astrophys. J.835, 99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Criscuoli, S., Norton, A., Whitney, T.: 2017, Photometric properties of network and faculae derived from HMI data compensated for scattered light. Astrophys. J.847, 93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Criscuoli, S., Penza, V., Lovric, M., Berrilli, F.: 2018, The correlation of synthetic UV color versus Mg II index along the solar cycle. Astrophys. J.865, 22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cristaldi, A., Ermolli, I.: 2017, 1D atmosphere models from inversion of Fe I 630 nm observations with an application to solar irradiance studies. Astrophys. J.841, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • De Gennaro Aquino, I., Hauschildt, P.H., Wedemeyer, S.: 2016, Phoenix meets CO5BOLD: 3D NLTE radiative transfer calculations for M-dwarf chromospheres. In: 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CS19), 149. DOI . ADS .

    Chapter  Google Scholar 

  • Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S.K., Spruit, H.C., Unruh, Y., Vögler, A.: 2009, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev.145, 337. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dudok de Wit, T., Kopp, G., Fröhlich, C., Schöll, M.: 2017, Methodology to create a new total solar irradiance record: making a composite out of multiple data records. Geophys. Res. Lett.44, 1196. DOI . ADS .

    Article  ADS  Google Scholar 

  • Edvardsson, B.: 2008, Observed versus predicted stellar flux distributions of solar-type stars. Phys. Scr. T133(1), 014011. DOI . ADS .

    Article  ADS  Google Scholar 

  • Egorova, T., Schmutz, W., Rozanov, E., Shapiro, A.I., Usoskin, I., Beer, J., Tagirov, R.V., Peter, T.: 2018, Revised historical solar irradiance forcing. Astron. Astrophys.615, A85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., Woods, T.N.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys.13, 3945. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fabbian, D., Khomenko, E., Moreno-Insertis, F., Nordlund, Å.: 2010, Solar abundance corrections derived through three-dimensional magnetoconvection simulations. Astrophys. J.724, 1536. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fabbian, D., Simoniello, R., Collet, R., Criscuoli, S., Korhonen, H., Krivova, N.A., Oláh, K., Jouve, L., Solanki, S.K., Alvarado-Gómez, J.D.: 2017, The variability of magnetic activity in solar-type stars. Astron. Nachr.338(7), 753. DOI . ADS .

    Article  ADS  Google Scholar 

  • Faurobert, M.: 2019, In: Engvold, O., Vial, J.-C., Skumanich, A. (eds.) Chapter 8 – Solar and Stellar Variability, 267. DOI . ADS .

    Chapter  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III – helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J.406, 319. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Balasubramaniam, K.S., Harder, J.: 2007, Semiempirical models of the solar atmosphere. II. The quiet-sun low chromosphere at moderate resolution. Astrophys. J.667, 1243. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Rovira, M.G.: 1985, Numerical evaluations in radiative transfer. J. Quant. Spectrosc. Radiat. Transf.34, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Stancil, P.C., Landi, E.: 2015, Solar spectral irradiance, solar activity, and the near-ultra-violet. Astrophys. J.809, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fontenla, J., White, O.R., Fox, P.A., Avrett, E.H., Kurucz, R.L.: 1999, Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J.518, 480. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., Atmos.116(D20), D20108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys.48, RG4001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U.G., Nordlund, Å., Plez, B.: 2008, A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys.486, 951. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haberreiter, M., Schmutz, W., Hubeny, I.: 2008, NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys.492(3), 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios, S., Tourpali, K., Schmutz, W.: 2017, A new observational solar irradiance composite. J. Geophys. Res.122, 5910. DOI . ADS .

    Article  Google Scholar 

  • Hauschildt, P.H., Baron, E., Allard, F.: 1997, Parallel implementation of the Phoenix generalized stellar atmosphere program. Astrophys. J.483, 390. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heiter, U., Kupka, F., van’t Veer-Menneret, C., Barban, C., Weiss, W.W., Goupil, M.-J., Schmidt, W., Katz, D., Garrido, R.: 2002, New grids of ATLAS9 atmospheres I: influence of convection treatments on model structure and on observable quantities. Astron. Astrophys.392, 619. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hubeny, I.: 1988, A computer program for calculating non-LTE model stellar atmospheres. Comput. Phys. Commun.52, 103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Johnson, L.C.: 1972, Approximations for collisional and radiative transition rates in atomic hydrogen. Astrophys. J.174, 227. DOI .

    Article  ADS  Google Scholar 

  • Kopp, G.: 2014, An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim.4(27), A14. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kostogryz, N.M., Kupka, F., Piskunov, N., Fabbian, D., Krueger, D., Gizon, L.: 2020, Accurate short-characteristics radiative transfer in ANTARES. Solar Phys., submitted.

  • Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? Astron. Astrophys.399, L1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krueger, D., Kostogryz, N., Fabbian, D., Kupka, F.: 2019, Improved radiative transfer in the ANTARES code. J. Phys. Conf. Ser.1225, 012017. DOI .

    Article  Google Scholar 

  • Kurucz, R.L., Peytremann, E., Avrett, E.H.: 1974, Blanketed Model Atmospheres for Early-Type Stars. ADS .

    Google Scholar 

  • Langangen, Ø., Carlsson, M.: 2009, The temperature diagnostic properties of the Mg I 457.1 nm line. Astrophys. J.696, 1892. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lean, J.: 2017, Sun-climate connections. Oxford Research Encyclopedia. DOI .

  • Mashonkina, L., Gehren, T., Shi, J.-R., Korn, A.J., Grupp, F.: 2011, A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars. Astron. Astrophys.528, A87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matthes, K., Funke, B., Andersson, M.E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M.A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C.H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D.R., Maycock, A.C., Misios, S., Rodger, C.J., Scaife, A.A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P.T., Versick, S.: 2017, Solar forcing for CMIP6 (v3.2). Geosci. Model Dev.10, 2247. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mauceri, S., Pilewskie, P., Richard, E., Coddington, O., Harder, J., Woods, T.: 2018, Revision of the Sun’s spectral irradiance as measured by SORCE SIM. Solar Phys.293, 161. DOI . ADS .

    Article  ADS  Google Scholar 

  • Norris, C.M., Beeck, B., Unruh, Y.C., Solanki, S.K., Krivova, N.A., Yeo, K.L.: 2017, Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars. Astron. Astrophys.605, A45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pereira, T.M.D., Uitenbroek, H.: 2015, RH 1.5D: a massively parallel code for multi-level radiative transfer with partial frequency redistribution and Zeeman polarisation. Astron. Astrophys.574, A3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Plez, B.: 2011, Cool star model atmospheres for Gaia : ATLAS, MARCS, and Phoenix. Journal of Physics Conference Series328, 012005. DOI . ADS .

    Article  Google Scholar 

  • Rempel, M.: 2014, Numerical simulations of quiet Sun magnetism: on the contribution from a small-scale dynamo. Astrophys. J.789, 132. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rempel, M.: 2020, On the contribution of Quiet Sun Magnetism on solar spectral irradiance variations: constraints on grand minimum scenarios. Astrophys. J., submitted.

  • Rottman, G.: 2005, The SORCE mission. Solar Phys.230, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasso, C., Andretta, V., Terranegra, L., Gomez, M.T.: 2017, The Mg I b triplet and the 4571 Å line as diagnostics of stellar chromospheric activity. Astron. Astrophys.604, A50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sbordone, L., Bonifacio, P., Castelli, F., Kurucz, R.L.: 2004, ATLAS and SYNTHE under Linux. Mem. Soc. Astron. Ital. Suppl.5, 93. ADS .

    ADS  Google Scholar 

  • Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys.517, A48. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V., Nyeki, S.: 2011, A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys.529, A67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Solanki, S.K., Krivova, N.A., Tagirov, R.V., Schmutz, W.K.: 2015, The role of the Fraunhofer lines in solar brightness variability. Astron. Astrophys.581, A116. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Solanki, S.K., Krivova, N.A., Yeo, K.L., Schmutz, W.K.: 2016, Are solar brightness variations faculae- or spot-dominated? Astron. Astrophys.589, A46. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapiro, A.I., Solanki, S.K., Krivova, N.A., Cameron, R.H., Yeo, K.L., Schmutz, W.K.: 2017, The nature of solar brightness variations. Nat. Astron.1, 612. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tagirov, R.V., Shapiro, A.I., Schmutz, W.: 2017, NESSY: NLTE spectral synthesis code for solar and stellar atmospheres. Astron. Astrophys.603, A27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M., Labs, D.: 2004, Solar irradiance reference spectra for two solar active levels. Adv. Space Res.34, 256. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thuillier, G., Melo, S.M.L., Lean, J., Krivova, N.A., Bolduc, C., Fomichev, V.I., Charbonneau, P., Shapiro, A.I., Schmutz, W., Bolsée, D.: 2014, Analysis of different solar spectral irradiance reconstructions and their impact on solar heating rates. Solar Phys.289, 1115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J., Shchukina, N.: 2009, Three-dimensional radiative transfer modeling of the polarization of the Sun’s continuous spectrum. Astrophys. J.694, 1364. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsymbal, V.: 1996, STARSP: a software system for the analysis of the spectra of normal stars. In: Adelman, S.J., Kupka, F., Weiss, W.W. (eds.) M.A.S.S., Model Atmospheres and Spectrum Synthesis, Astronomical Society of the Pacific Conference Series108, 198. ADS .

    Google Scholar 

  • Uitenbroek, H.: 2001, Multilevel radiative transfer with partial frequency redistribution. Astrophys. J.557, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., Linde, T.: 2005, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys.429, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Witzke, V., Shapiro, A.I., Solanki, S.K., Krivova, N.A., Schmutz, W.: 2018, From solar to stellar brightness variations. The effect of metallicity. Astron. Astrophys.619, A146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett.36(1), L01101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yeo, K.L., Krivova, N.A., Solanki, S.K.: 2017, EMPIRE: a robust empirical reconstruction of solar irradiance variability. J. Geophys. Res.122, 3888. DOI . ADS .

    Article  Google Scholar 

  • Yeo, K.L., Solanki, S.K., Norris, C.M., Beeck, B., Unruh, Y.C., Krivova, N.A.: 2017, Solar irradiance variability is caused by the magnetic activity on the solar surface. Phys. Rev. Lett.119(9), 091102 DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was inspired by fruitful discussions with the members of the international team of ID 335 team supported by the International Science Institute (ISSI), Bern. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. MH acknowledges funding by Daniel Karbacher. We would like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. This research was supported by the Research Council of Norway through its Centres of Excellence scheme, project number 262622, and through grants of computing time from the Programme for Supercomputing. DF gratefully acknowledges partial support by project P29172 of the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Criscuoli.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Irradiance Variations of the Sun and Sun-like Stars

Guest Editors: Greg Kopp and Alexander Shapiro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Criscuoli, S., Rempel, M., Haberreiter, M. et al. Comparing Radiative Transfer Codes and Opacity Samplings for Solar Irradiance Reconstructions. Sol Phys 295, 50 (2020). https://doi.org/10.1007/s11207-020-01614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01614-2

Navigation