Skip to main content
Log in

A multiwavelength study of a double impulsive flare

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Extensive data from the Solar Maximum Mission (SMM) and ground-based observatories are presented for two flares; the first occurred at 12:48 UT on 31 August, 1980 and the second just 3 min later. They were both compact events located in the same part of the active region. The first flare appeared as a typical X-ray flare: the Caxix X-ray lines were broadened (≡ 190±40 km s-1) and blue shifted (≡ 60±20 km s-1) during the impulsive phase, and there was a delay of about 30 s between the hard and soft X-ray maxima. The relative brightness of the two flares was different depending on the spectral region being used to observe them, the first being the brighter at microwave and hard X-ray wavelengths but fainter in soft X-rays. The second flare showed no significant mass motions, and the impulsive and gradual phases were almost simultaneous. The physical characteristics of the two flares are derived and compared. The main difference between them was in the pre-flare state of the coronal plasma at the flare site: before the first flare it was relatively cool (3 × 106 K) and tenuous (4 × 109 cm-3), but owing to the residual effects of the first flare the coronal plasma was hotter (5 × 106 K) and more dense (3 × 1011 cm-3) at the onset of the second flare. We are led to believe from these data that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence.

A simple study of the brightest flares observed by the SMM shows that at least 43% of them are multiple. Thus, the situation studied here may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters. We draw a number of conclusions from this study. First, the evolution of the second flare is substantially affected by the presence of the first flare. Secondly, the primary energy release in the second event is in the corona. Thirdly, the flares occur in a decaying magnetic region, probably as a result of the interaction of existing sheared loops; there is no evidence of emerging magnetic flux. Also, magnetic structures of greatly varying size participate in the flare processes. Lastly, there is some indication that the loops are not symmetrical or stable throughout the flares, i.e. the magnetic field does not act as a uniform passive bottle for the plasma, as is often assumed in flare models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acton, L. W., Culhane, J. L., Gabriel, A. H., Bentley, R. D., Bowles, J. A., Firth, J. G., Finch, M. L., Gilbreth, C. W., Guttridge, P., Hayes, R. W., Joki, E. G., Jones, B. B., Kent, B. J., Leibacher, J. W., Nobles, R. A., Patrick, T. J., Phillips, K. J. H., Rapley, C. G., Sheather, P. H., Sherman, J. C., Stark, J. P., Springer, L. A., Turner, R. F., and Wolfson, C. J.: 1980, Solar Phys. 65, 53.

    Google Scholar 

  • Acton, L. W., Culhane, J. L., Gabriel, A. H., Wolfson, C. J., Rapley, C. G., Phillips, K. J. H., Antonucci, E., Bentley, R. D., Hayes, R. W., Joki, E. G., Jordan, C., Kayat, M., Kent, B., Leibacher, J. W., Nobles, R. A., Parmar, A. N., Strong, K. T., and Veck, N. J.: 1981, Astrophys. J. 244, L137.

    Google Scholar 

  • Antonucci, E., Gabriel, A. H., Acton, L. W., Culhane, J. L., Doyle, J. G., Leibacher, J. W., Machado, M., Orwig, L. E., and Rapley, C. G.: 1982, Solar Phys. 78, 107.

    Google Scholar 

  • van Beek, H. F., Hoyng, P., Lafleur, B., and Simnett, G. M.: 1980, Solar Phys. 65, 39.

    Google Scholar 

  • Bely-Dubau, J.: 1979, Monthly Notices Roy. Astron. Soc. 186, 405.

    Google Scholar 

  • Brown, J. C.: 1973, Solar Phys. 32, 227.

    Google Scholar 

  • Cliver, E. W. and Wefer, F. L.: 1981, Solar Phys. 71, 39.

    Google Scholar 

  • de Jager, C., Machado, M. E., Schadee, A., Strong, K. T., Švestka, Z., Woodgate, B. R., and van Tend, W.: 1983, Solar Phys. 84, 205.

    Google Scholar 

  • Dennis, B. R., Frost, K. F., and Orwig, L. E.: 1980, Astrophys. J. 244, L163.

    Google Scholar 

  • Doschek, G. A., Feldman, U., Kreplin, R. W., and Chen, L.: 1980, Astrophys. J. 239, 725.

    Google Scholar 

  • Feix, G.: 1970, Solar Phys. 13, 227.

    Google Scholar 

  • Fritzová-Švestková, L., Švestka, Z., and Chase, R. C.: 1976, Solar Phys. 48, 275.

    Google Scholar 

  • Kahler, S. W.: 1979, Solar Phys. 62, 347.

    Google Scholar 

  • Krall, K. R., Smith, J. B., Hagyard, M. J., West, E. A., and Cummings, N. P.: 1982, Solar Phys. 79, 59.

    Google Scholar 

  • Lin, R.: 1981, Presentation to the Solar Terrestrial Neighborhood Meeting, Huntsville, Alabama.

  • Mewe, R. and Gronenschild, E. H. B. M.: 1981, Astron. Astrophys. Suppl. 45, 11.

    Google Scholar 

  • Mewe, R., Schrijver, J., and Sylwester, J.: 1980, Astron. Astrophys. Suppl. 40, 223.

    Google Scholar 

  • Mewe, R., Gronenschild, E. H. B. M., and van den Oord, G. H. J.: 1983, preprint.

  • Orwig, L. E., Frost, K. J., and Dennis, B. R.: 1980, Solar Phys. 65, 25.

    Google Scholar 

  • Pallavicini, R. and Vaiana, G. S.: 1980, Solar Phys. 67, 127.

    Google Scholar 

  • Perrenoud, M. R.: 1982, Solar Phys. 81, 197.

    Google Scholar 

  • Schmahl, E. J., Kundu, M. R., Strong, K. T., Bentley, R. D., Smith, J. B., and Krall, K.: 1982, Solar Phys. 80, 233.

    Google Scholar 

  • Sturrock, P. A.: 1980, Solar Flares, Skylab Workshop II, Colorado Univ. Press, Boulder, Chapter 8.

    Google Scholar 

  • Sylwester, J., Schrijver, J., and Mewe, R.: 1980a, Solar Phys. 67, 285.

    Google Scholar 

  • Sylwester, J., Mewe, R., and Schrijver, J.: 1980b, Astron. Astrophys. Suppl. 40, 335.

    Google Scholar 

  • Takakura, T.: 1969, Solar Phys. 6, 133.

    Google Scholar 

  • Withbroe, G. L.: 1975, Solar Phys. 45, 301.

    Google Scholar 

  • Wolfson, C. J.: 1981, Solar Phys. 76, 377.

    Google Scholar 

  • Wolfson, C. J., Doyle, J. G., Leibacher, J. W., and Phillips, K. J. H.: 1983, Astrophys. J. 269, 319.

    Google Scholar 

  • Woodgate, B. E., Tandberg-Hanssen, E. A., Bruner, E. C., Beckers, J. M., Brandt, J. C., Henze, W., Hyder, C. L., Kalet, M. W., Kenny, P. J., Knon, E. D., Michalitsianos, A. G., Rehse, R., Shine, R. A., and Tinsley, H. D.: 1980, Solar Phys. 65, 73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NOAA/Space Environment Laboratory, currently at NASA/MSFC, Ala., U.S.A.

Now at Sacramento Peak Observatory, Tucson, Ariz., U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strong, K.T., Benz, A.O., Dennis, B.R. et al. A multiwavelength study of a double impulsive flare. Sol Phys 91, 325–344 (1984). https://doi.org/10.1007/BF00146303

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146303

Keywords

Navigation