Skip to main content
Log in

Stretchable conductor from oriented short conductive fibers for wiring soft electronics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We developed the stretchable wiring made from oriented short conductive fibers and applied it to a stretchable pressure sensor. The short fibers were mechanically oriented on an elastic substrate/film across the long wiring axis of wiring. The stretchable wiring with 5 mm in width had 17.0 Ω in initial resistance per 1 cm in length and the change in its resistance was only 214 % at 100 % elongation. Even if the wiring is stretched in the long axis direction, the short fibers form junctions with other fibers, thereby retaining their electric conductivity. A stretchable pressure sensor sheet, which is sensitive to pressure in the vertical direction and insensitive to elongation in the horizontal direction, was also successfully developed using the stretchable wiring and elastomer films. These sensor cells sensitively measured the pressure up to ca. 64 kPa. This sensor sheet was demonstrated as a shoe insole pressure sensing system and the sensor system could detect a pressure distribution from soles to adapt to its deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arcelus A, Veledar I, Goubran R, Knoefel F, Sveistrup H, Bilodeau M (2011) Measurements of sit-to-stand timing and symmetry from bed pressure sensors. IEEE Trans Instrum Meas 60:1732–1740

    Article  Google Scholar 

  2. Nishyama M, Miyamoto M, Watanabe K (2011) Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J Biomed Opt 16:017002

    Article  Google Scholar 

  3. Suutala J, Röning J (2008) Methods for person identification on a pressure-sensitive floor: experiments with multiple classifiers and reject option. Inf Fusion 9:21–40

    Article  Google Scholar 

  4. Kim H, Chang S (2013) High-resolution touch floor system using particle swarm optimization neural network. IEEE Sens J 13:2084–2093

    Article  Google Scholar 

  5. Wu X, Rakheja S, Boileau PÉ (1998) Study of human–seat interface pressure distribution under vertical vibration. Int J Ind Ergon 21:433–449

    Article  Google Scholar 

  6. Ashruf CMA (2002) Thin flexible pressure sensors. Sens Rev 22:322–327

    Article  Google Scholar 

  7. Marenzi E, Bertolotti GM, Cristiani A (2013) Design and development of a monitoring system for the interface pressure measurement of seated people. IEEE Trans Instrum Meas 62:570–577

    Article  Google Scholar 

  8. Uemura S, Watanabe Y, Yoshida M, Tokuhisa H, Takada N (2013) Pressure sensor array fabricated with polyamino acid. J Photopolym Sci Technol 26:411–414

    Article  CAS  Google Scholar 

  9. Watanabe Y, Uemura S, Hoshino S (2014) Printed pressure sensor array sheets fabricated using poly(amino acid)-based piezoelectric elements. Jpn J Appl Phys 53:05HB15

    Article  Google Scholar 

  10. Lacour SP, Benmerah S, Tarte E, FitzGerald J, Serra J, McMahon S, Fawcett J, Graudejus O, Yu Z, 3rd Morrison B (2010) Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput 48:945–954

    Article  Google Scholar 

  11. Guo R, Yu Y, Xie Z, Liu X, Zhou X, Gao Y, Liu Z, Zhou F, Yang Y, Zheng Z (2013) Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv Mater 25:3343–3350

    Article  CAS  Google Scholar 

  12. Yan C, Kang W, Wang J, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Stretchable and wearable electrochromic devices. ACS Nano 8:316–322

    Article  CAS  Google Scholar 

  13. Liu CH, Yu X (2011) Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 6:75

    Article  Google Scholar 

  14. Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee SS, Yang MY, Ko SH (2014) Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26:5808–5814

    Article  CAS  Google Scholar 

  15. Kim S, Byun J, Choi S, Kim D, Kim T, Chung S, Hong Y (2014) Negatively strain-dependent electrical resistance of magnetically arranged nickel composites: application to highly stretchable electrodes and stretchable lighting devices. Adv Mater 26:3094–3099

    Article  CAS  Google Scholar 

  16. Feng C, Liu K, Wu JS, Liu L, Cheng JS, Zhang Y, Sun Y, Li Q, Fan S, Jiang K (2010) Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Funct Mater 20:885–891

    Article  CAS  Google Scholar 

  17. Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14:868–876

    Article  Google Scholar 

  18. Kim T, Song H, Ha J, Kim S, Kim D, Chung S, Lee J, Hong Y (2014) Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Appl Phys Lett 104:113103

    Article  Google Scholar 

  19. Jeong JW, Yeo WH, Akhtar A, Norton JJS, Kwack YJ, Li S, Jung SY, Su Y, Lee W, Xia J, Cheng H, Huang Y, Choi WS, Bretl T, Rogers JA (2013) Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater 25:6839–6846

    Article  CAS  Google Scholar 

  20. Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593

    Article  CAS  Google Scholar 

  21. Kim DH, Liu Z, Kim YS, Wu J, Song J, Kim HS, Huang Y, Hwang K, Zhang Y, Rogers JA (2009) Optimized structural designs for stretchable silicon integrated circuits. Small 5:2841–2847

    Article  CAS  Google Scholar 

  22. Kim DH, Song J, Choi WM, Kim HS, Kim RH, Liu Z, Huang YY, Hwang KC, Zhang Y, Rogers JA (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci 105:18675–18680

    Article  CAS  Google Scholar 

  23. Verplancke R, Bossuyt F, Cuypers D, Vanfleteren J (2012) Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance. J Micromech Microeng 22:015002

    Article  Google Scholar 

  24. Guo CF, Sun T, Liu Q, Suo Z, Ren Z (2014) Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun 5:3121

    Google Scholar 

  25. Choi WM, Song J, Khang DY, Jiang H, Huang YY, Rogers JA (2007) Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett 7:1655–1663

    Article  CAS  Google Scholar 

  26. Choong CL, Shim MB, Lee BS, Jeon S, Ko DS, Kang TH, Bae J, Lee SH, Byun KE, Im J, Jeong YJ, Park CE, Park JJ, Chung UI (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26:3451–3458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Kamata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobeshima, T., Uemura, S., Yoshida, M. et al. Stretchable conductor from oriented short conductive fibers for wiring soft electronics. Polym. Bull. 73, 2521–2529 (2016). https://doi.org/10.1007/s00289-016-1680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1680-9

Keywords

Navigation