Skip to main content
Log in

Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have developed a competitive immunoassay for the model pesticide triazophos (TRIAZ). The method is based on the use of only one monoclonal antibody immobilized on multi-labeled gold nanoparticle (AuNP) probes. The immunoassay uses two sets of probe. The first is a multi-labeled AuNP probe that carries monoclonal antibody (mcAb), single-stranded DNA (ssDNA) and horse radish peroxidase (HRP). The second is a magnetic microparticle (MMP) probe that is obtained by coating MMPs with ovalbumin coupled to TRIAZ. Free TRIAZ and MMP-immobilized TRIAZ compete for binding to the mcAb on the surface of the AuNPs. Because TRIAZ is a rather small molecule, it cannot be bound by two antibodies. The competitive immunoassay overcomes the limitations of small molecule detection using one kind of mcAb only. Sensitive transduction of the immunoreaction is accomplished by enzymatically catalyzed amplified. TRIAZ was quantified by a conventional ELISA and by the immunoassay presented here. Both method are highly sensitive and well reproducible. The new assay has a linear response in the 15 ng L−1 to 40 μg L−1 TRIAZ concentration range, and a 14 ng L−1 limit of detection which make it more sensitive than the ELISA. The recovery rate in case of spiked samples ranges from 78.4 to 105%, and the RSD is <20%. A good correlation was further established between the results of the immunoassay and those of GC-MS analysis.

Schematic of a competitive colorimetric triazophos immunoassay employing magnetic microspheres (black color) and multi-labeled gold nanoparticles (red color). The assay overcomes the obstacles in pesticide detection and shows higher sensitivity than the conventional ELISA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shim WB, Yang Z, Kim J, Choi JG, Je JH, Kang SJ, Kolosova AY, Eremin SA, Chung DH (2006) Immunochromatography using colloidal gold−antibody probe for the detection of atrazine in water samples. J Agric Food Chem 54:9728–9734. doi:10.1021/jf0620057

    Article  CAS  Google Scholar 

  2. Liang CZ, Jin RY, Gui WJ, Zhu GN (2007) Enzyme-linked immunosorbent assay based on a monoclonal antibody for the detection of the insecticide Triazophos: assay optimization and application to environmental samples. Environ Sci Technol 41:6783–6788. doi:10.1021/es070828m

    Article  CAS  Google Scholar 

  3. Du P, Jin M, Yang L, Du X, Chen G, Zhang C, Jin F, Shao H, She Y, Wang S, Zheng L, Wang J (2015) A rapid immunomagnetic-bead-based immunoassay for triazophos analysis. RSC Adv 5(99):81046–81051. doi:10.1039/c5ra15106f

    Article  CAS  Google Scholar 

  4. Grimalt S, Dehouck P (2016) Review of analytical methods for the determination of pesticide residues in grapes. J Chromatogr A 1433:1–23. doi:10.1016/j.chroma.2015.12.076

    Article  CAS  Google Scholar 

  5. Yang G, Zhuang H, Chen H, Ping X, Bu D (2015) A gold nanoparticle based immunosorbent bio-barcode assay combined with real-time immuno-PCR for the detection of polychlorinated biphenyls. Sensors Actuators B Chem 214:152–158. doi:10.1016/j.snb.2015.02.128

    Article  CAS  Google Scholar 

  6. Duan H, Chen X, Xu W, Fu J, Xiong Y, Wang A (2015) Quantum-dot submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta 132:126–131. doi:10.1016/j.talanta.2014.08.076

    Article  CAS  Google Scholar 

  7. Huang X, Chen R, Xu H, Lai W, Xiong Y (2016) Nanospherical brush as catalase container for enhancing the detection sensitivity of competitive Plasmonic ELISA. Anal Chem 88(3):1951–1958. doi:10.1021/acs.analchem.5b04518

    Article  CAS  Google Scholar 

  8. Mariana MS, Mayorga Martinez CC, Watanabe T, Ivandini TA, Honda Y, Pino F, Nakata K, Fujishima A, Einaga Y, Merkoçi A (2016) Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens Bioelectron 75:365–374. doi:10.1016/j.bios.2015.08.058

    Article  Google Scholar 

  9. Wang X, Mu Z, Shangguan F, Liu R, Pu Y, Yin L (2014) Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica-hydrogel hybrid microbeads. J Hazard Mater 273:287–292. doi:10.1016/j.jhazmat.2014.03.006

    Article  CAS  Google Scholar 

  10. Li J, Song S, Liu X, Wang L, Pan D, Huang Q, Zhao Y, Fan C (2008) Enzyme-based multi-component optical Nanoprobes for sequence- specific detection of DNA hybridization. Adv Mater 20(3):497–500. doi:10.1002/adma.200701918

    Article  CAS  Google Scholar 

  11. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636. doi:10.1021/acs.chemrev.5b00100

    Article  CAS  Google Scholar 

  12. Han KC, Yang EG, Ahn DR (2012) A highly sensitive, multiplex immunoassay using gold nanoparticle-enhanced signal amplification. Chem Commun 48(47):5895–5897. doi:10.1039/c2cc31659e

    Article  CAS  Google Scholar 

  13. Lan M, Guo Y, Zhao Y, Liu Y, Gui W, Zhu G (2016) Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement. Anal Chim Acta 938:146–155. doi:10.1016/j.aca.2016.07.044

    Article  CAS  Google Scholar 

  14. Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal Chem 54:1–10. doi:10.1016/j.trac.2013.10.007

    Article  Google Scholar 

  15. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083. doi:10.1007/s00604-016-1858-8

    Article  CAS  Google Scholar 

  16. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541. doi:10.1021/ac0006627

    Article  CAS  Google Scholar 

  17. Oh BK, Nam JM, Lee SW, Mirkin CA (2006) A fluorophore-based bio-barcode amplification assay for proteins. Small 2(1):103–108. doi:10.1002/smll.200500260

    Article  CAS  Google Scholar 

  18. Zhou Y, Tian XL, Li YS, Pan FG, Zhang YY, Zhang JH, Yang L, Wang XR, Ren HL, Lu SY, Li ZH, Chen QJ, Liu ZS, Liu JQ (2011) An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II). Biosens Bioelectron 26(8):3700–3704. doi:10.1016/j.bios.2011.02.008

    Article  CAS  Google Scholar 

  19. Zhou Y, Tian XL, Li YS, Zhang YY, Yang L, Zhang JH, Wang XR, Lu SY, Ren HL, Liu ZS (2011) A versatile and highly sensitive probe for hg(II), Pb(II) and cd(II) detection individually and totally in water samples. Biosens Bioelectron 30(1):310–314. doi:10.1016/j.bios.2011.08.034

    Article  CAS  Google Scholar 

  20. Li YS, Meng XY, Zhou Y, Zhang YY, Meng XM, Yang L, Hu P, Lu SY, Ren HL, Liu ZS, Wang XR (2015) Magnetic bead and gold nanoparticle probes based immunoassay for beta-casein detection in bovine milk samples. Biosens Bioelectron 66:559–564. doi:10.1016/j.bios.2014.12.025

    Article  CAS  Google Scholar 

  21. Du L, Ji W, Zhang Y, Zhang C, Liu G, Wang S (2015) An ultrasensitive detection of 17beta-estradiol using a gold nanoparticle-based fluorescence immunoassay. Analyst 140(6):2001–2007. doi:10.1039/c4an01952k

    Article  CAS  Google Scholar 

  22. Han B, Zhu Z, Li Z, Zhang W, Tang Z (2014) Conformation modulated optical activity enhancement in chiral cysteine and au nanorod assemblies. J Am Chem Soc 136(46):16104–16107. doi:10.1021/ja506790w

    Article  CAS  Google Scholar 

  23. Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of au nanorod and DNA assemblies. J Am Chem Soc 134(7):3322–3325. doi:10.1021/ja209981n

    Article  CAS  Google Scholar 

  24. Liu W, Zhu Z, Deng K, Li Z, Zhou Y, Qiu H, Gao Y, Che S, Tang Z (2013) Gold nanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties. J Am Chem Soc 135(26):9659–9664. doi:10.1021/ja312327m

    Article  CAS  Google Scholar 

  25. Zhou Y, Yang M, Sun K, Tang Z, Kotov N (2010) Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J Am Chem Soc 132:6006–6013. doi:10.1021/ja906894r

    Article  CAS  Google Scholar 

  26. Zhu Z, Liu W, Li Z, Han B, Zhou Y, Gao Y, Tang Z (2012) Manipulation of collective optical activity in one-dimensional Plasmonic assembly. ACS Nano 6(3):2326–2332. doi:10.1021/nn2044802

    Article  CAS  Google Scholar 

  27. Zhou Y, Zhu Z, Huang W, Liu W, Wu S, Liu X, Gao Y, Zhang W, Tang Z (2011) Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption. Angew Chem 50(48):11456–11459. doi:10.1002/anie.201103762

    Article  CAS  Google Scholar 

  28. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886. doi:10.1126/science.1088755

    Article  CAS  Google Scholar 

  29. Zhang X, Su H, Bi S, Li S, Zhang S (2009) DNA-based amplified electrical bio-barcode assay for one-pot detection of two target DNAs. Biosens Bioelectron 24(8):2730–2734. doi:10.1016/j.bios.2008.12.032

    Article  CAS  Google Scholar 

  30. Liu M, Jia C, Huang Y, Lou X, Yao S, Jin Q, Zhao J, Xiang J (2010) Highly sensitive protein detection using enzyme-labeled gold nanoparticle probes. Analyst 135(2):327–331. doi:10.1039/b916629g

    Article  CAS  Google Scholar 

  31. Du P, Jin M, Chen G, Zhang C, Jiang Z, Zhang Y, Zou P, She Y, Jin F, Shao H, Wang S, Zheng L, Wang J (2016) A competitive bio-barcode amplification immunoassay for small molecules based on nanoparticles. Sci Rep 6:38114. doi:10.1038/srep38114

    Article  CAS  Google Scholar 

  32. Pratibha P, Surinder PS, Sunil KA, Vinay G, Monika D, Sukhvir S, Bansi DM (2007) Application of Thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23(6):3333–3337. doi:10.1021/la062901c

    Article  Google Scholar 

  33. Chen ZJ, Ou XM, Tang FQ, Jiang L (1996) Effect of nanometer particles on the adsorbability and enzymatic activity of glucose oxidase. Colloids Surf B 7:173–179. doi:10.1016/0927-7765(96)01291-X

    Article  CAS  Google Scholar 

  34. Li H, Xie T, Ye L, Wang Y, Xie C (2017) Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Microchim Acta 184(4):1011–1019. doi:10.1007/s00604-017-2096-4

    Article  CAS  Google Scholar 

  35. Ju KJ, Feng JX, Feng JJ, Zhang QL, Xu TQ, Wei J, Wang A-J (2015) Biosensor for pesticide triazophos based on its inhibition of acetylcholinesterase and using a glassy carbon electrode modified with coral-like gold nanostructures supported on reduced graphene oxide. Microchim Acta 182(15–16):2427–2434. doi:10.1007/s00604-015-1584-7

    Article  CAS  Google Scholar 

  36. Li H, Xie C, Li S, Xu K (2012) Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf B 89:175–181. doi:10.1016/j.colsurfb.2011.09.010

    Article  CAS  Google Scholar 

  37. Bhamore JR, Ganguly P, Kailasa SK (2016) Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sensors Actuators B Chem 233:486–495. doi:10.1016/j.snb.2016.04.111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation (31671938), Chinese Public Interest Industrial Science & Technology Project (201203094), and National Key Foundation for Exploring Scientific Instrument (2013YQ140371).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maojun Jin or Jing Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Jin, M., Chen, G. et al. Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Microchim Acta 184, 3705–3712 (2017). https://doi.org/10.1007/s00604-017-2365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2365-2

Keywords

Navigation