Skip to main content
Log in

Temperature acclimation of respiration and photosynthesis in the brown algaLaminaria saccharina

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sporophytes of the brown algaLaminaria saccharina (L.) Lamour grown at 15°C contained significantly more chlorophylla (chla) than did similar plants grown at 5°C. The increase in chla in 15°C plants was due to increased numbers of photosystem II reaction centes, and possibly to increased photosynthetic unit size, compared with 5°C plants. These changes were associated with increasedα values (photosynthetic efficiencies) in 15°C-grownL. saccharina relative to 5°C-grown plants. The changes inα together with reduced respiration rates allowed 15°C-grownL. saccharina to achieve net photosynthesis and light-saturated photosynthesis at a lower photon fluence rate (PFR) than 5°C plants when both groups were assayed at the same temperature (15°C). The photon fluence rates necessary to reach the compensation point and achieve light-saturated photosynthesis (I c andI k , respectively) increased with increasing incubation temperature inL. saccharina grown at both 5 and 15°C. However, acclimation responses to growth temperature compensated for the short-term effect of temperature onI c andI k . Consequently, plants grown at 5 and 15°C were able to achieve similar rates of light-limited photosynthesis, and similarI c andI k values at their respective growth temperatures. These responses are undoubtedly important for perennial seaweeds such asL. saccharina, which frequently grow in light-limited habitats and experience pronounced seasonal changes in water temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Baker, N. R., McKiernan, M. (1988). Modifications to the photosynthetic apparatus of higher plants in response to changes in the light environment. Biol. J. Linn. Soc. 34: 193–203

    Google Scholar 

  • Ben-Zion, M., Dubinsky, Z. (1988). An on-line system for measuring photosynthetic characteristics via an oxygen electrode. J. Plankton Res. 10: 555–558

    Google Scholar 

  • Berry, J. A., Raison, J. K. (1981). Responses of macrophytes to temperature. In: Lange, O. L. et al. (eds.) Encyclopedia of plant physiology, new series, 12A. Springer-Verlag, Berlin, p. 277–338

    Google Scholar 

  • Bolton, J. J., Lüning, K. (1982). Optimum growth and maximum survival temperatures of AtlanticLaminaria species (Phaeophyta) in culture. Mar. Biol. 66: 89–94

    Google Scholar 

  • Bulthius, D. A. (1987). Effect of temperature on photosynthesis and growth of seagrasses. Aquat. Bot. 27: 27–40

    Google Scholar 

  • Davison, I. R. (1987a). Adaptation of photosynthesis inLaminaria saccharina (Phaeophyta) to changes in growth temperature. J. Phycol. 23: 273–283

    Google Scholar 

  • Davison, I. R. (1987b). Partial purification and preliminary characterization of pyruvate kinase from the brown algaAscophyllum nodosum. Br. phycol. J. 22: 401–409

    Google Scholar 

  • Davison, I. R. (1991). Environmental effects on photosynthesis: I. Temperature. J. Phycol. 27: 2–8

    Google Scholar 

  • Davison, I. R., Davison, J. O. (1987). The effect of growth temperature on enzyme activities in the brown algaLaminaria saccharina (L.) Lamour. Br. phycol. J. 22: 77–87

    Google Scholar 

  • Duncan, M. J., Harrison, P. J. (1982). Comparison of solvents for extracting chlorophylls from marine macrophytes. Botanica mar. 25: 445–447

    Google Scholar 

  • Falkowski, P. G., Owens, T. G., Ley, A. C., Mauzerall, D. C. (1981). Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Pl. Physiol. 68: 969–973

    Google Scholar 

  • Fortes, M. D., Lüning, K. (1980). Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgoländer Meeresunters. 34: 15–29

    Google Scholar 

  • Geider, R. J. (1987). Light and temperature dependence of the carbon to chlorophylla ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol. 106: 1–34

    Google Scholar 

  • Gerard, V. A. (1988). Ecotypic differentiation in light-related traits of the kelpLaminaria saccharina. Mar. Biol 97: 25–36

    Google Scholar 

  • Gerard, V. A. (1990). Ecotypic differentiation in the kelpLaminaria saccharina: phase-specific adaptation in a complex life cycle. Mar. Biol. 107: 519–528

    Google Scholar 

  • Greene, R. M., Gerard, V. A. (1990). Effects of high-frequency light fluctuations on growth and photoacclimation of the red algaChondrus crispus. Mar. Biol. 105: 337–344

    Google Scholar 

  • Hatcher, B. G., Chapman, A. R. O., Mann, K. H. (1977). An annual carbon budget for the kelpLaminaria longicruris. Mar. Biol. 44: 85–96

    Google Scholar 

  • Jassby, A. D., Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547

    Google Scholar 

  • Johnston, C. S., James, R. G., Hunt, R. D. (1977). A seasonal carbon budget for a Laminaria population in a Scottish sea loch. Helgoländer Meeresunters. 30: 527–545

    Google Scholar 

  • Kirk, J. T. O. (1983). Light and photosynthesis in aquatic systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kremer, B. P. (1981). Carbon metabolism. In: Lobban, C. S., Wynne, M. J. (eds.) The biology of seaweeds. Blackwell, Oxford, p. 493–533

    Google Scholar 

  • Kuebler, J. E., Davison, I. R., Yarish, C. (1991). Photosynthetic temperature adaptation in the red algaeLomentaria baileyana andLomentaria orcadensis. Br. phycol. J. 26: 9–19

    Google Scholar 

  • Lüning, K. (1971). Seasonal growth ofLamainaria hyperborea under recorded underwater light conditions near Helgoland. Proc. 4th Eur. mar. Biol. Symp. 4: 347–361 [D. J. Crisp (ed.) Cambridge University Press, Cambridge]

    Google Scholar 

  • Lüning, K. (1979). Growth strategies of threeLaminaria species (Phaeophyceae) inhabiting different depth zones in the sub-littoral region of Helgoland (North Sea). Mar. Ecol. Prog. Ser. 1: 195–207

    Google Scholar 

  • Lüning, K. (1990). Seaweeds. Their environment, biogeography and ecophysiology. Wiley & Sons, New York

    Google Scholar 

  • Lüning, K., Dring, M. J. (1985). Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar. Biol. 87: 119–129

    Google Scholar 

  • Marsh, J. A., Dennison, W. C., Alberte, R. S. (1986). Effect of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). J. exp. mar. Biol. Ecol. 101: 257–267

    Google Scholar 

  • Mishkind, M., Mauzerall, D. (1980). Kinetic evidence for a common photosynthetic step in diverse seaweeds. Mar. Biol. 56: 261–265

    Google Scholar 

  • Myers, J., Graham, J. (1971). The photosynthetic unit inChlorella measured by repetitive short flashes. Pl. Physiol. 48: 282–286

    Google Scholar 

  • Newell, R. C., Pye, V. I. (1968). Seasonal variations in the effect of temperature on the respiration of certain intertidal algae. J. mar. biol. Ass. U.K. 48: 341–348

    Google Scholar 

  • Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Watanabe, A., Hattori, A. (eds.) Cultures and collections of algae. Japanese Society of Plant Physiology, p. 65–75

  • Raven, J. A., Geider, R. J. (1988). Temperature and algal growth. New Phytol. 110: 441–461

    Google Scholar 

  • Seely, R. G., Duncan, M. J., Vidaver, W. E. (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 12: 184–188

    Google Scholar 

  • Smith, B. M., Melis, A. (1987). Photosystem stoichiometry and excitation distribution in chloroplasts from surface and minus 20 meter blades ofMacreocystis pyrifera, the giant kelp. Pl. Physiol. 84: 1325–1330

    Google Scholar 

  • Sukenik, A., Bennett, J., Falkowski, P. (1987). Light-saturated photosynthesis — limitation by electron transport or carbon fixation? Biochim. biophys. Acta 891: 205–215

    Google Scholar 

  • Zimmerman, R. C., Smith, R. D., Alberte, R. S. (1989). Thermal acclimation and whole-plant carbon balance inZostera marina L. (eelgrass). J. exp. mar. Biol. Ecol. 130: 93–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, New Brunswick

Please address all correspondence and requests for reprints to I.R. Davison

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, I.R., Greene, R.M. & Podolak, E.J. Temperature acclimation of respiration and photosynthesis in the brown algaLaminaria saccharina . Mar. Biol. 110, 449–454 (1991). https://doi.org/10.1007/BF01344363

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344363

Keywords

Navigation