Skip to main content
Log in

Gigantic enhancement of the dielectric permittivity in wet yttrium-doped barium cerate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Water behavior studies were performed in porous ceramic media based on proton conducting yttrium-doped barium cerate BaCe0.85Y0.15O3-α (BCY15), which is a component of a new high-temperature dual membrane fuel cell (dmFC) design. Complex permittivity measurements were carried out on porous samples at room temperature. A new phenomenon was observed during wetting—a gigantic enhancement of the real component of the capacitance at lower frequencies. A possible explanation is the formation of semi-liquid layer with dipole structure on the pores walls, which is supposed to be organized also at operating temperatures. Since the electrochemically active volumetric layer facilitates the water formation, it should improve the operation of the dmFC by decreasing its resistance, which is experimentally confirmed. This phenomenon can be of importance also for classical proton conducting solid oxide fuel cells, as well as for operation in electrolyzer mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang C (2004) Chem Rev 104:4727–4766

    Article  CAS  Google Scholar 

  2. Fuller T, Newman J (1993) J Electrochem Soc 140:1218–1225

    Article  CAS  Google Scholar 

  3. Hussaini I, Wang C-Y (2009) J Power Sources 187:444–451

    Article  CAS  Google Scholar 

  4. Li H, Tang Y, Wong Z, Si Z, Wu Z, Song D, Zhang J, Wong H, Lui Z, Abouatalah R, Mazza A (2008) J Power Sources 178:103–117

    Article  CAS  Google Scholar 

  5. Baschuc J, Li X (2008) J Power Sources 86:181–196

    Article  Google Scholar 

  6. Thorel A, Chesnaud A, Viviani M, Barbucci A, Presto S, Piccardo P, Ilhan Z, Vladikova D, Stoynov Z (2009) IDEAL-cell, a high temperature innovative dual membrane fuel-Cell. In: Singhal SC, Yokokawa H (eds). Solid oxide fuel cells 11 (SOFC-XI). The Electrochemical Society, Pennington. ECS Trans 25:753–762

  7. Innovative Dual mEmbrAne fuel Cell: IDEAL Cell. http://www.ideal-cell.eu. Accessed 25 Aug 2012

  8. Thorel A (2005) Cellule de pile a combustible haute temperature a conduction mixte anionique et protonique. Patent no 0550696000

  9. Caboche G, Hochepied J-F, Piccardo P, Przybylski K, Ruckdäschel R, Ardigó M-R, Fatome E, Chevalier S, Perron A, Combemale L, Palard M, Prazuch J, Brylewski T (2009) Compatibility and reactivity between materials in an innovative dual membrane fuel-Cell (IDEAL-Cell) design. In: Singhal SC, Yokokawa H (eds) Solid oxide fuel cells 11 (SOFC-XI). The Electrochemical Society, Pennington. ECS Trans 25:763–772

  10. Vladikova D, Stoynov Z, Raikova G, Thorel A, Chesnaud A, Abreu J, Viviani M, Barbucci A, Presto S, Carpanese P (2011) Electrochim Acta 56:7955

    Article  CAS  Google Scholar 

  11. Presto S, Barbucci A, Viviani M, Ilhan Z, Ansar S, Soysal D, Thorel A, Abreu J, Chesnaud A, Politova T, Przybylski K, Prazuch J, Zhao Z, Vladikova D, Stoynov Z (2009) IDEAL-Cell, innovative dual membrane fuel-cell: fabrication and electrochemical testing of first prototypes. In: Singhal SC, Yokokawa H (eds) Solid oxide fuel cells 11 (SOFC-XI). The Electrochemical Society, Pennington. ECS Trans 25:773–782

  12. Iwahara H (2004) Solid State Ionics 168:299

    Article  CAS  Google Scholar 

  13. Bonanos N, Knight K, Ellis B (1955) Solid State Ionics 79:161

    Article  Google Scholar 

  14. Suksamai W, Metcalfe I (2007) Solid State Ionics 178:6276

    Article  Google Scholar 

  15. Viviani M, Presto S, Barbucci A, Carpanese M, Amendola R, Thorel A, Chesnaud A, Abreu J, Costa R, Ilhan Z, Ansar S, Vladikova D, Stoynov Z (2011) Proton and mixed conductors for dual membrane fuel cells. MRS Proc. doi:10.1557/opl.2011.1338

  16. Krapchanska M, Vladikova D, Stoynov Z, Chesnaud A, Abreu J, Thorel A, Raikova G (2011) Optimization of cathode compartment in dual membrane fuel cell. In: Vladikova D, Stoynov Z (eds) International workshop advances and innovations in SOFCs 2 proceedings. Institute of Electrochemistry and Energy Systems, Sofia, pp 72–77

    Google Scholar 

  17. Thorel A, Vladikova D, Stoynov Z, Chesnaud A, Viviani M, Presto S (2012) Fuel cell with monolithic electrolytes membrane assembly. US patent 20120156573/21

  18. Robertson NL, Michaels J (1991) J Electrochem Soc 138:1494

    Article  CAS  Google Scholar 

  19. Mogensen M, Lindegaard T (1993) Testing a single solid oxide fuel cells by DC and AC techniques. In: Singal SC, Iwahara H (eds) Solid oxide fuel cells III. The Electrochemical Society, Pennington, PV93-4:484

  20. Sakai N, Yamaji K, Negishi H, Horita T, Yokakawa H, Xiong YP, Phillips M (2000) Electrochemistry 68:499

    CAS  Google Scholar 

  21. Raz S, Sasaki K, Maier J, Riess I (2001) Solid State Ionics 143:181

    Article  CAS  Google Scholar 

  22. Brown M, Primdahl S, Mogensen M (2000) J Electrochem Soc 147:475

    Article  CAS  Google Scholar 

  23. Costamagna P, Costa P, Antonucci V (1998) Electrochim Acta 43:375

    Article  CAS  Google Scholar 

  24. Singal SC, Kendall K (eds) (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford

    Google Scholar 

  25. Przybylski K, Prazuch J, Brylewski T, Amendola R, Presto S, Viviani M (2011) Chemical stability study of Barium Cerate-based ionic conducting materials. In: Vladikova D, Stoynov Z (eds) International workshop advances and innovations in SOFCs 2 proceedings. Institute of Electrochemistry and Energy Systems, Sofia, pp 62–71

    Google Scholar 

  26. Cheetham A, Day P (eds) (1988) Solid state chemistry techniques. Clarendon, Oxford

    Google Scholar 

  27. Nowotny J, Rekas M (1992) Key Eng Mater 66&67:45

    Article  Google Scholar 

  28. Gökcen M, Köysal O (2011) Mater Chem Phys 129:1142

    Article  Google Scholar 

  29. Tan CK, Goh GKL, Cheah WL (2007) Thin Solid Films 515:6577

    Article  CAS  Google Scholar 

  30. Schmidt R, Sinclair DC (2010) Chem Mater 22:6

    Article  CAS  Google Scholar 

  31. Lide D (ed) (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  32. Iwahara H (1996) Solid State Ionics 86–88:9

    Article  Google Scholar 

  33. Stoynov Z, Zhaohui X, Vladikova D (2003) Bulg Chem Commun 35:163

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 213389. Powders were fabricated and supplied by Marion Technologies (Fr). The authors would like to thank Prof. Alain Thorel and Dr. Anthony Chesnaud from ARMINES (Fr) for the preparation of the investigated samples and the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria E. Vladikova.

Additional information

With this paper, we would like to thank Prof. Alexander Milchev for the long-term scientific and personal friendship, enriched with numerous professional discussions, which has helped us to go deeper into the impedance studies of the underpotential deposition of Ag, as well as in the processes of water vapor formation and growth in solid oxide fuel cells

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoynov, Z.B., Vladikova, D.E. & Mladenova, E.A. Gigantic enhancement of the dielectric permittivity in wet yttrium-doped barium cerate. J Solid State Electrochem 17, 555–560 (2013). https://doi.org/10.1007/s10008-012-1916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1916-z

Keywords

Navigation