Skip to main content
Log in

Reactivity descriptors for iron porphyrins and iron phthalocyanines as catalysts for the electrooxidation of reduced glutathione

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have examined the electrocatalytic activity for the oxidation of glutathione of a wide variety of molecular catalysts: FeN4 complexes (MN4 = metal porphyrins and metal phthalocyanines) confined on the surface of graphite electrodes in order to establish reactivity descriptors for these catalysts for this reaction. We have conducted these studies mainly in alkaline media (pH = 13). The reaction order in OH is 1 for pH values lower than 8. For higher pH values, the reaction becomes pH independent. The reaction order in glutathione is close to 1 in the concentration range examined (10−3–10−2 M). The activity of the surface-confined MN4 complexes is related to the Fe(II)/(I) and the Fe(III)/(II) redox transitions of the immobilized FeN4 complexes. The catalysts are active only in the potential range where the Fe(II) state predominates. The activity as (log j) E versus the Fe(II)/(I) formal potential varies in a non-linear fashion giving a volcano correlation as previously observed for the oxidation of L-cysteine and many other reactions catalyzed by MN4 complexes. A plot of (E)logj versus the Fe(II)/(I) formal potential gives also an asymmetrical volcano, with one of the branches with a slope close to unity. These volcano correlations clearly shows that the Fe(II)/(I) redox potential needs to be tuned to a certain potential to obtain a maximum activity for the oxidation of glutathione. Most Fe porphyrins show low activity because the metal center Fe(III) is in the wrong oxidation state in the potential range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pompella A, Visvikis A, Paolicchi A, Tata V, Casini AF (2003) Biochem Pharmacol 66:1499–1503

    Article  CAS  Google Scholar 

  2. Couto N, Malys N, Gaskell S, Barber J (2013) J Proteome Res 12:2885–2894

    Article  CAS  Google Scholar 

  3. Pastore A, Piemonte F, Locatelli M, Russo AL, Gaeta LM (2001) Tozzi, Giulia, Federici G. Clin Chem 47:1467–1469

    CAS  Google Scholar 

  4. Safavi A, Maleki N, Farjami E, Mahyari FA (2009) Anal Chem 81:7538–7543

    Article  CAS  Google Scholar 

  5. Tang H, Chen J, Nie L, Kuang Y (2006) Electrochim Acta 51:3046–3051

    Article  CAS  Google Scholar 

  6. Budnikov GK, Zityatdinova GK, Valitova YR (2004) J Anal Chem 59:573–576

    Article  CAS  Google Scholar 

  7. Lowinsohn D, Lee PT, Compton RG (2014) J Braz Chem Soc 25:1614–1620

    CAS  Google Scholar 

  8. Karimi-Maleh H, Keyvanfard M, Alizad K, Khosravi V (2012) Int J Electrochem Sci 7:6816–6830

    CAS  Google Scholar 

  9. Reynaud JA, Malfoy B, Canesson P (1980) J Electroanal Chem 114:195.211

    Article  Google Scholar 

  10. Johll ME, Williams DG, Johnston DC (1997) Electroanalysis 9:1397–1402

    Article  CAS  Google Scholar 

  11. Zhang L, Ning L, Zhang Z, Li S, Yan H, Pang H, Ma H (2015) Sensors Actuators B Chem 221:28–36

    Article  CAS  Google Scholar 

  12. Griveau S, Gulppi M, Pavez J, Zagal JH, Bedioui F (2003) Electroanalysis 15:779–785

    Article  CAS  Google Scholar 

  13. Pereira-Rodrigues N, Cofre R, Zagal JH, Bedioui F (2007) Bioelectrochem 70:147–154

    Article  CAS  Google Scholar 

  14. Zagal JH (1992) Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  15. Zagal JH, Griveau SS, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  16. Mimica D, Bedioui F, Zagal JH (2002) Electrochim Acta 48:323–329

    Article  CAS  Google Scholar 

  17. Zagal JH, Gulppi M, Depretz C, Lelièvre D (1999) J Porphyrins Phthalocyanines 3:355–363

    Article  CAS  Google Scholar 

  18. Aguirre MJ, Isaacs M, Armijo F, Bocchi N, Zagal JH (1998) Electroanalysis 10:571–575

    Article  CAS  Google Scholar 

  19. Obirai JC, Nyokong T (2007) J Electroanal Chem 600:251–256

    Article  CAS  Google Scholar 

  20. Xu H, Xiao J, Liu B, Griveau S, Bedioui F (2015) Biosens Bioelectron 66:438–444

    Article  CAS  Google Scholar 

  21. Aguirre MJ, Isaacs M, Armijo JF, Basaez L, Zagal JH (2002) Electroanalysis 14:356–362

    Article  CAS  Google Scholar 

  22. Zagal JH, Paez C (1989) Electrochim Acta 34:243–247

    Article  CAS  Google Scholar 

  23. Lezna, RO, Juanto S, Zagal JH, J Electroanal Chem 452: 221-228

  24. Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Phys Chem Chem Phys 9:3383–3396

    Article  CAS  Google Scholar 

  25. Gutierrez CA, Silva JF, Recio FJ, Griveau, Bedioui F, CA C, JH Z (2014) Electrocatalysis 5:426–437

    Article  CAS  Google Scholar 

  26. Sehloto N, Nyokong T, Zagal JH, Bedioui F (2006) Electrochim Acta 51:5125–5130

    Article  Google Scholar 

  27. Barrera C, Zhukov I, Villagra E, Zagal JH (2006) J Electroanal Chem 589:212–218

    Article  CAS  Google Scholar 

  28. Ozoemena KI, Nyokong T (2005) Talanta 67:162–168

    Article  CAS  Google Scholar 

  29. Zagal JH, Ureta-Zañartu S (1982) J Electrochem Soc 129:2242–2247

    Article  CAS  Google Scholar 

  30. Linares C, Geraldo D, Paez M, Zagal JH (2003) J Solid State Electrochem 7:626–631

    Article  CAS  Google Scholar 

  31. Adekunle AS, Ozoemena KI (2010) J Electroanal Chem 645:41–49

    Article  CAS  Google Scholar 

  32. Caro CA, Zagal JH, Bedioui F (2003) J Electrochem Soc 150:E95–E103

    Article  CAS  Google Scholar 

  33. Caro CA, Bedioui F, Paez MA (2004) J Electrochem Soc 151:E32–E39

    Article  CAS  Google Scholar 

  34. Matemadombo F, Nyokong T (2007) Electrochim Acta 52:6856–6864

    Article  CAS  Google Scholar 

  35. Nyokong T, Vilakazi S (2003) Talanta 61:27–35

    Article  CAS  Google Scholar 

  36. Cárdenas-Jirón GI, Zagal JH (2001) J Electroanal Chem 497:55–60

    Article  Google Scholar 

  37. Santos E, Schmickler W (2010) in Modern Aspects of Electrochemistry 50, Theory and Experiment in Electrocatalysis, Perla B Balbuena, Venkat R Subramanian Eds. Springer New York, chapter 2 :25-88.

  38. Trasatti S (2003) in Part 2: Theory of Electrocatalysis in Handbook of Fuel Cells, Fundamentals Technology and Applications, Electrocatalysis, Wiley 2:69

  39. Koper MTM (2013) J Solid State Electrochem 17:339–344

    Article  CAS  Google Scholar 

  40. Koper MTM (2016) J Solid State Electrochem 20:895–899

    Article  CAS  Google Scholar 

  41. Koper MTM (2013) Chem Sci 4:2710–2723

    Article  CAS  Google Scholar 

  42. NØrskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Johnson H (2004) J Phys Chem B 108:17886–17178

    Article  Google Scholar 

  43. Trasatti S (1972) J Electroanal Chem 39:163–184

    Article  CAS  Google Scholar 

  44. Trasatti S (1977) In: Gerischer H and Tobias CW (eds) Adv electrochem electrochem eng and electrochemical engineering, Volume 10. Wiley Interscience, New York, pp 214–228

  45. NØrskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23–J26

    Article  Google Scholar 

  46. Conway BE, Beatty EM, De Maine PAD (1962) Electrochim Acta 7:39–54

    Article  CAS  Google Scholar 

  47. Santos E, Schmickler W (2010) Catalysis of electron transfer at metal electrodes in Catalysis in Electrochemistry. In: Santos E, Schmickler WW. (eds). Wiley, New Jersey, USA, pp 197–222

  48. Sabatier P (1911) Ber Dtsch Chem Ges 44:1984–2001

    Article  CAS  Google Scholar 

  49. Weber JH, Bush DM (1965) Inorg Chem 4:472–475

    Article  CAS  Google Scholar 

  50. Leznoff CC, Lever ABP (1989-1993-1996) In Phthalocyanine Properties and Applications, VCH Publishers (LSK) Ltd. Cambridge: pp 1–4

  51. Paulsen CE, Carroll KS (2013) Chem Rev 113:4633–4679

    Article  CAS  Google Scholar 

  52. Zagal JH, Tasca F, Recio J, Venegas R, Geraldo DA, Sancy M (2014) Electrochim Acta 140:314–319

    Article  Google Scholar 

  53. Agboola BO, Ozomena KI, Nyokong T (2006) Electrochim Acta 51:6470–6478

    Article  CAS  Google Scholar 

  54. Adekunle AS, Mamba BB, Agboola BO, Ozoemena KI (2011) Int J Electrochem Sci 6:4388–4403

    CAS  Google Scholar 

  55. Zagal JH, Koper MTM (2016) Angew Chem Int Ed. doi:10.1002/anie.201604311

Download references

Acknowledgments

This work was supported by Fondecyt Project 1140199, Millennium Nucleus of Molecular Engineering for Catalysis and Biosensors RC120001, Anillo Project ACT1412, and Dicyt-USACH. C.G-C is grateful to a Doctoral Fellowship from Conicyt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José H. Zagal.

Additional information

It is an honor for us to dedicate this manuscript to Professor György Inzelt on the occasion of his 70th birthday and for his very important contributions in several areas of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Cerón, C., Páez, M.A. & Zagal, J.H. Reactivity descriptors for iron porphyrins and iron phthalocyanines as catalysts for the electrooxidation of reduced glutathione. J Solid State Electrochem 20, 3199–3208 (2016). https://doi.org/10.1007/s10008-016-3396-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3396-z

Keywords

Navigation