Skip to main content
Log in

Effect of silane coupling agent on the morphology, structure, and properties of poly(vinylidene fluoride–trifluoroethylene)/BaTiO3 composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Micron- and submicron-sized barium titanate (BaTiO3) particles, untreated and surface modified with aminopropyl triethoxy silane, were incorporated in poly(vinylidene fluoride–trifluoroethylene) to fabricate composites with up to 60 vol% of ceramic phase. The morphology and structure of solvent cast and compression-molded films, and their thermal, viscoelastic, and dielectric properties were investigated. When surface-modified BaTiO3 was used, it was possible to decrease both the viscoelastic and the dielectric losses of highly filled solvent cast films, while their storage modulus and relative permittivity either increased or remained equal, owing to reduced porosity and improved matrix-filler compatibility. The effect of BaTiO3 surface modification on the morphology of compression-molded films was less marked, leading to unchanged viscoelastic properties, and lower permittivity and dielectric losses. For all composites the frequency dependency of the dielectric properties at low frequencies was suppressed with modified BaTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121

    Article  Google Scholar 

  2. Dang Z-M, Yuan J-K, Zha J-W, Zhou T, Li S-T, Hu G-H (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723

    Article  Google Scholar 

  3. Barber P, Balasubramanian S, Anguchamy Y et al (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733

    Article  Google Scholar 

  4. Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci, Part B 49:1421–1429

    Article  Google Scholar 

  5. Thakur VK, Tan EJ, Lin MF, Lee PS (2011) Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759

    Article  Google Scholar 

  6. Thakur VK, Tan EJ, Lin MF, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009

    Article  Google Scholar 

  7. Thakur VK, Lin MF, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    Article  Google Scholar 

  8. Chan HLW, Cheung MC, Choy CL (1999) Study on BaTiO3/P(VDF–TrFE) 0–3 composites. Ferroelectrics 224:541–548

    Article  Google Scholar 

  9. Hsiang HI, Lin KY, Yen FS, Hwang CY (2001) Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites. J Mater Sci 36:3809–3815. doi:10.1023/A:1017946405447

    Article  Google Scholar 

  10. Chanmal CV, Jog JP (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym Lett 2:294–301

    Article  Google Scholar 

  11. Cheung MC, Chan HLW, Choy CL (2001) Dielectric relaxation in barium titanate/polyvinylidene fluoride–trifluoroethylene composites. Ferroelectrics 264:1721–1726

    Article  Google Scholar 

  12. Gregorio R, Cestari M, Bernardino FE (1996) Dielectric behaviour of thin films of beta-PVDF/PZT and beta-PVDF/BaTiO3 composites. J Mater Sci 31:2925–2930. doi:10.1007/BF00356003

    Article  Google Scholar 

  13. Lin MF, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  Google Scholar 

  14. Wang QT, Jiang WL, Guan SW, Zhang YH (2013) Preparation and dielectric properties of AGS@CuPc/PVDF composites. J Inorg Organomet Polym Mater 23:743–750

    Article  Google Scholar 

  15. Kuang XW, Liu Z, Zhu H (2013) Dielectric properties of Ag@C/PVDF composites. J Appl Polym Sci 129:3411–3416

    Article  Google Scholar 

  16. Chiolerio A, Lombardi M, Guerriero A et al (2013) Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J Mater Sci 48:6943–6951. doi:10.1007/s10853-013-7500-9

    Article  Google Scholar 

  17. Dalle Vacche S, Oliveira F, Leterrier Y, Michaud V, Damjanovic D, Månson JAE (2012) The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P(VDF–TrFE)/BaTiO3 composites. J Mater Sci 47:4763–4774. doi:10.1007/s10853-012-6362-x

    Article  Google Scholar 

  18. Marra SP, Ramesh KT, Douglas AS (1999) The mechanical properties of lead-titanate/polymer 0–3 composites. Compos Sci Technol 59:2163–2173

    Article  Google Scholar 

  19. Marra SP, Ramesh KT, Douglas AS (1999) The mechanical and electromechanical properties of calcium-modified lead titanate/poly(vinylidene fluoride-trifluoroethylene) 0–3 composites. Smart Mater Struct 8:57–63

    Article  Google Scholar 

  20. Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S (2012) Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 47:1378–1388. doi:10.1007/s10853-011-5916-7

    Article  Google Scholar 

  21. Lonjon A, Demont P, Dantras E, Lacabanne C (2012) Mechanical improvement of P(VDF–TrFE)/nickel nanowires conductive nanocomposites: influence of particles aspect ratio. J Non-Cryst Solids 358:236–240

    Article  Google Scholar 

  22. El Achaby M, Essassi EM, el KacemQaiss A (2013) Melt processing of polyvinylidene fluoride based composites containing mineral nanoparticles. Key Eng Mater 550:165–170

    Article  Google Scholar 

  23. Osinska K, Czekaj D (2013) Thermal behavior of BST//PVDF ceramic-polymer composites. J Therm Anal Calorim 113:69–76

    Article  Google Scholar 

  24. Muralidhar C, Pillai PKC (1989) Matrix filler interactions and its influence on barium-titanate (BaTiO3)/polyvinylidene fluoride (PVDF) composite. Ferroelectrics 89:17–26

    Article  Google Scholar 

  25. Dang ZM, Wang HY, Xu HP (2006) Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 89:112902

    Article  Google Scholar 

  26. Kelarakis A, Hayrapetyan S, Ansari S, Fang J, Estevez L, Giannelis EP (2010) Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): structure and properties. Polymer 51:469–474

    Article  Google Scholar 

  27. Song R, Yang D, He L (2007) Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly(vinylidene fluoride). J Mater Sci 42:8408–8417. doi:10.1007/s10853-007-1787-3

    Article  Google Scholar 

  28. Livi S, Duchet-Rumeau J, Gerard JF (2011) Tailoring of interfacial properties by ionic liquids in a fluorinated matrix based nanocomposites. Eur Polym J 47:1361–1369

    Article  Google Scholar 

  29. Thakur VK, Yan J, Lin MF, Zhi CY et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  Google Scholar 

  30. Morel F, Bounor-Legare V, Espuche E, Persyn O, Lacroix M (2012) Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J 48:919–929

    Article  Google Scholar 

  31. Nguyen VS, Rouxel D, Vincent B et al (2013) Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF–TrFE) nanocomposite films. Appl Surf Sci 279:204–211

    Article  Google Scholar 

  32. Kim P, Doss NM, Tillotson JP et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592

    Article  Google Scholar 

  33. Lin MF, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Article  Google Scholar 

  34. Yu K, Wang H, Zhou YC, Bai YY, Niu YJ (2013) Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J Appl Phys 113:034105

    Article  Google Scholar 

  35. Dou XL, Liu XL, Zhang Y, Feng H, Chen JF, Du S (2009) Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite. Appl Phys Lett 95:132904

    Article  Google Scholar 

  36. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater & Interfaces 3:2184–2188

    Article  Google Scholar 

  37. Almadhoun MN, Bhansali US, Alshareef HN (2012) Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications. J Mater Chem 22:11196–11200

    Article  Google Scholar 

  38. Lin MF, Lee PS (2013) Formation of PVDF-g-HEMA/BaTiO3 nanocomposites via in situ nanoparticle synthesis for high performance capacitor applications. J Mater Chem A 1:14455–14459

    Article  Google Scholar 

  39. Simoes R, Rodriguez-Perez M, De Saja J, Constantino C (2009) Tailoring the structural properties of PVDF and P(VDF–TrFE) by using natural polymers as additives. Polym Eng Sci 49:2150–2157

    Article  Google Scholar 

  40. Tanaka H, Yukawa H, Nishi T (1988) Effect of crystallization condition on the ferroelectric phase-transition in vinylidene fluoride trifluoroethylene (VF2/F3E) copolymers. Macromol 21:2469–2474

    Article  Google Scholar 

  41. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  Google Scholar 

  42. Gibson L, Ashby MF (1988) Cellular solids-structure and properties. Pergamon Press, Oxford

    Google Scholar 

  43. Frübing P, Wang FP, Gunter C, et al. (2010) In: Proceedings of the 2010 IEEE international conference on solid dielectrics (ICSD 2010), University of Potsdam, Potsdam, Germany

  44. Linares A, Acosta JL (1997) Tensile and dynamic mechanical behaviour of polymer blends based on PVDF. Eur Polym J 33:467–473

    Article  Google Scholar 

  45. Sencadas V, Lanceros-Mendez S, Mano JF (2004) Characterization of poled and non-poled beta-PVDF films using thermal analysis techniques. Thermochim Acta 424:201–207

    Article  Google Scholar 

  46. Zhang SH, Klein RJ, Ren KL et al (2006) Normal ferroelectric to ferroelectric relaxor conversion in fluorinated polymers and the relaxor dynamics. J Mater Sci 41:271–280. doi:10.1007/s10853-006-6081-2

    Article  Google Scholar 

  47. Omote K, Ohigashi H, Koga K (1997) Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline” films of vinylidene fluoride trifluoroethylene copolymer. J Appl Phys 81:2760–2769

    Article  Google Scholar 

  48. Parry EJ, Tabor D (1973) Effect of hydrostatic pressure and temperature on mechanical loss properties of polymers. 2. Halogen polymers. Polymer 14:623–627

    Article  Google Scholar 

  49. Yagi T, Tatemoto M, Sako J (1980) Transition behavior and dielectric-properties in trifluoroethylene and vinylidene fluoride co-polymers. Polym J 12:209–223

    Article  Google Scholar 

  50. Sencadas V, Lanceros-Méndez S, Mano JF (2006) Thermal characterization of a vinylidene fluoride-trifluorethylene (75-25) (%mol) copolymer film. J Non-Cryst Solids 352:5376–5381

    Article  Google Scholar 

  51. Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90:012901

    Article  Google Scholar 

  52. Cohen RE (2007) Theory of ferroelectrics: a vision for the next decade and beyond. In: Gonzalo JA, Jiménez B (eds) Ferroelectricity. Wiley-VCH, Weinheim, pp 139–154

    Google Scholar 

  53. Beier CW, Cuevas MA, Brutchey RL (2010) Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir 26:5067–5071

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swiss National Science Foundation for funding in the framework of the Marie Heim-Vögtlin and Nano-Tera programs, and Solvay Solexis SpA for kindly providing the P(VDF–TrFE) and for fruitful discussion. Dr Li Jin, Felix Lindström and Arthur Aebersold are acknowledged for technical support, and the Powder Technology Laboratory (EPFL) and the Interdisciplinary Centre for Electron Microscopy (EPFL) for use of their equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Leterrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalle Vacche, S., Oliveira, F., Leterrier, Y. et al. Effect of silane coupling agent on the morphology, structure, and properties of poly(vinylidene fluoride–trifluoroethylene)/BaTiO3 composites. J Mater Sci 49, 4552–4564 (2014). https://doi.org/10.1007/s10853-014-8155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8155-x

Keywords

Navigation