Skip to main content
Log in

Toughening of polyester resins through blending with polyolefins

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of blending low concentrations (1 to 10%) of polyolefins on the crystallization and irreversible deformation behaviour of polyester (PET) resins was investigated. The olefin particles did not nucleate crystallization of PET from the melt but did depress the rate of crystallization. Decreases in the cold crystallization temperature of PET during heating from the glassy state in blends with linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) were attributed to stress induced crystallization created by large volume expansions associated with melting of the olefin particles. A sharp transition in fracture strain for PET and the PET-olefin blends was observed with strain rate, where at low strain rates fracture occurred during work hardening, and as the strain rate increased, fracture occurred during cold drawing. The transition corresponded with a decrease in draw stress, a decrease in draw ratio and an increase in density of the neck. A shift in the transition to higher strain rates for the blend compositions was attributed to increased rates of crystallization and orientation due to strain induced crystallization at the stress fields surrounding the olefin particles. As the strain rate increased and the cold drawing process became more adiabatic, the mechanical behaviour was controlled by the kinetics of crystallization and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Bucknall and R. R. Smith, Polymer 6 (1965) 37.

    Google Scholar 

  2. C. B. Bucknall, in “Toughened Plastics” (Applied Science, London, 1977) pp. 137–80.

    Google Scholar 

  3. R. P. Kambour, J. Polym. Sci. Macromol. Rev. 7 (1973) 1.

    Google Scholar 

  4. S. G. Turley and H. Keskkula, Polymer 21 (1980) 466.

    Google Scholar 

  5. A. M. Donald and E. J. Kramer, J. Appl. Polym. Sci. 27 (1982) 3729.

    Google Scholar 

  6. J. D. Moore, Polymer 12 (1971) 478.

    Google Scholar 

  7. J. Silberberg and C. D. Han, J. Appl. Polym. Sci. 22 (1978) 599.

    Google Scholar 

  8. B. Z. Jang, D. R. Uhlmann and J. Bb. Vandersande, ANTEC, Soc. Plast. Eng. Conf. (1984) 549.

  9. M. R. Grancio, Polym. Eng. Sci. 12 (1972) 213.

    Google Scholar 

  10. A. M. Donald and E. J. Kramer, J. Mater. Sci. 17 (1982) 1765.

    Google Scholar 

  11. R. P. Petrich, Polym. Eng. Sci. 13 (1973) 248.

    Google Scholar 

  12. H. Breuer, F. Haaf and J. Stabenow, J. Macromol. Sci. Phys. B14 (1977) 387.

    Google Scholar 

  13. A. Siegmann, L. K. English, E. Baer and A. Hiltner, Polym. Eng. Sci. 24 (1984) 877.

    Google Scholar 

  14. S. Wu, J. Polym. Sci. Polym. Phys. Ed. 21 (1983) 699.

    Google Scholar 

  15. S. Y. Hobbs, R. C. Bopp and V. H. Watkins, Polym. Eng. Sci. 23 (1983) 380.

    Google Scholar 

  16. M. A. Maxwell and A. F. Yee, ibid. 21 (1981) 205.

    Google Scholar 

  17. A. F. Yee, J. Mater. Sci. 12 (1977) 757.

    Google Scholar 

  18. L. J. Broutman and S. Sahu, Mater. Sci. Eng. 8 (1971) 98.

    Google Scholar 

  19. J. Leidner and R. T. Woodhams, J. Appl. Polym. Sci. 18 (1974) 1639.

    Google Scholar 

  20. S. K. Brown, Brit. Polym. J. 12 (1980) 24.

    Google Scholar 

  21. A. Galeski, Z. Bartczak and M. Pracella, Polym. 25 (1984) 1323.

    Google Scholar 

  22. A. K. Gupta and S. N. Purwar, J. Appl. Polym. Sci. 29 (1984) 1598.

    Google Scholar 

  23. A. Escala and R. Stein, in “Multiphase Polymers” edited by S. L. Cooper and G. M. Estes, Advances in Chemistry Series 176 (American Chemical Society, Washington DC, 1979) p. 1053.

    Google Scholar 

  24. E. Martuscelli, C. Silvestre and G. C. Abate, Polymer 23 (1982) 229.

    Google Scholar 

  25. E. Martuscelli, C. Silvestre and L. Bianchi, ibid. 24 (1983) 1458.

    Google Scholar 

  26. Z. Bartczak, A. Galeski, E. Martuscelli and C. N. R. Arco Felize, Polym. Eng. Sci. 24 (1984) 1155.

    Google Scholar 

  27. I. Marshall and A. B. Thompson, Proc. R. Soc. A221 (1954) 541.

    Google Scholar 

  28. G. P. Andrianova, A. S. Keckekyan and V. A. Kargin, J. Polym. Sci. A-2 9 (1971) 1919.

    Google Scholar 

  29. S. W. Allison and I. M. Ward, Brit. J. Appl. Phys. 18 (1967) 1151.

    Google Scholar 

  30. P. I. Vincent, Polymer 1 (1960) 7.

    Google Scholar 

  31. I. M. Ward, in “Mechanical Properties of Solid Polymers” (Wiley Interscience, New York, 1983) Ch. 11.

    Google Scholar 

  32. A. Cross and R. N. Haward, J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 2423.

    Google Scholar 

  33. J. W. Maher, R. N. Haward and J. N. Hay, ibid. 18 (1980) 2169.

    Google Scholar 

  34. S. Wu, “Polymer Interface and Adhesion” (Marcel Dekker, New York, 1982) Ch. 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilfong, D.L., Hiltner, A. & Baer, E. Toughening of polyester resins through blending with polyolefins. J Mater Sci 21, 2014–2026 (1986). https://doi.org/10.1007/BF00547942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547942

Keywords

Navigation