Skip to main content
Log in

Styryl Dyes as Two-Photon Excited Fluorescent Probes for DNA Detection and Two-Photon Laser Scanning Fluorescence Microscopy of Living Cells

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Spectral-fluorescent properties of benzothiazole styryl monomer (Bos-3) and homodimer (DBos-21) dyes in presence of DNA were studied. The dyes enhance their fluorescence intensity in 2–3 orders of magnitude upon interaction with DNA. Studied styrylcyanines in DNA presence demonstrate rather high values of two-photon absorption (TPA) cross-section, which are comparable with the values of TPA cross section of the rhodamine dyes. An applicability of the styrylcyanines as probes for the fluorescence microscopy of living cells was studied. It was shown that both dyes are cell-permeable but homodimer dye DBos-21 produces noticeably brighter staining of HeLa cells comparing with monomer dye Bos-3. Molecules of DBos-21 initially bind to the nucleic acids- containing cell organelles (presumable mitochondria) and are able to penetrate into the cell nucleus. Thus, homodimer styryl DBos-21 dye is viewed as efficient stain for single-photon and two-photon excitation fluorescence imaging of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haughland R (2002) Molecular probes. Handbook of fluorescent probes and research chemicals, 9th edn. Molecular Probes Inc., Eugene

    Google Scholar 

  2. Albota M, Beljonne D, Brédas J-L, Ehrlich JE, Fu J-Y, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu X-L, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281(5383):1653–1656. doi:10.1126/science.281.5383.1653

    Article  CAS  PubMed  Google Scholar 

  3. Xu C, Webb WW (1996) Measurement of two-photon excitation cross-sections of molecular fluorophores with data from 690 nm to 1050 nm. J Opt Soc Am B 13(3):481–491. doi:10.1364/JOSAB.13.000481

    Article  CAS  Google Scholar 

  4. Bradley DJ, Hutchinson MHR, Koetser H (1972) Interaction of picosecond laser pulses with organic molecules II: two-photon absorption cross sections. Proc R Soc Lond A 329(1576):105–119. doi:10.1098/rspa.1972.0103

    Article  CAS  Google Scholar 

  5. Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross-sections of biomolecular probes from 690 to 960 nm. Appl Opt 37(31):7352–7356. doi:10.1364/AO.37.007352

    Article  CAS  PubMed  Google Scholar 

  6. Albota M, Beljonne D, Brédas J-L, Ehrlich JE, Fu J-Y, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu X-L, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281(5383):1653–1656. doi:10.1126/science.281.5383.1653

    Article  CAS  PubMed  Google Scholar 

  7. Fischer A, Cremer C, Stelzer EHK (1995) Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser. Appl Opt 34(12):1989–2003. doi:10.1364/AO.34.001989

    Article  CAS  Google Scholar 

  8. Tian L, Hu Z, Shi P, Zhou H, Wu J, Tian Y, Zhou Y, Tao X, Jiang M (2007) Synthesis and two-photon optical characterization of D-π-D type Schiff bases. J Lumin 127:423–430. doi:10.1016/j.jlumin.2007.02.040

    Article  CAS  Google Scholar 

  9. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bodnar MV, Slominsky YL, Kachkovski AD (2007) Experimental and theoretical approaches to understanding two-photon absorption spectra in polymethine and squaraine molecules. J Opt Soc Am B 24(1):56–66. doi:10.1364/JOSAB.24.000056

    Article  CAS  Google Scholar 

  10. Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bodnar MV, Slominsky YL, Kachkovski AD (2007) Molecular structure—two-photon absorption property relations in polymethine dyes. J Opt Soc Am B 24(1):67–76. doi:10.1364/JOSAB.24.000067

    Article  Google Scholar 

  11. Ahn TK, Kim KS, Kim DY, Noh SB, Aratani N, Ikeda C, Osuka A, Kim D (2006) Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control. J Am Chem Soc 128:1700–1704. doi:10.1021/ja056773a

    Article  CAS  PubMed  Google Scholar 

  12. Huang Z-L, Lei H, Li N, Qiu Z-R, Wang H-Z, Guo J-D, Luo Y, Zhong Z-P, Liu X-F, Zhou Z-H (2003) Novel heterocycle-based organic molecules with two-photon induced blue fluorescent emission. J Mater Chem 13:708–711. doi:10.1039/b300924f

    Article  CAS  Google Scholar 

  13. Reinhardt BA, Brott LL, Clarson SJ, Dillard AG, Bhatt JC, Kannan R, Yuan L, He GS, Prasad PN (1998) Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem Mater 10:1863–1874. doi:10.1021/cm980036e

    Article  CAS  Google Scholar 

  14. Kim O-K, Lee K-S, Woo HY, Kim KS, He GS, Swiatkiewicz J, Prasad PN (2000) New class of two-photon absorbing chromophores based on dithienothiophene. Chem Mater 12:284–286. doi:10.1021/cm990662r

    Article  CAS  Google Scholar 

  15. So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429. doi:10.1146/annurev.bioeng.2.1.399

    Article  CAS  PubMed  Google Scholar 

  16. Ohulchanskyy TY, Pudavar HE, Yarmoluk SM, Yashchuk VM, Bergey EG, Prasad PN (2003) A monomethine cyanine dye Cyan 40 for two-photon-excited fluorescence detection of nucleic acids and their visualization in live cells. Photochem Photobiol 77(2):138–145. doi:10.1562/0031-8655(2003) 077<0138:AMCDCF>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  17. Van Orden A, Cai H, Goodwin PM, Keller RA (1999) Efficient detection of single DNA fragments in flowing sample streams by two-photon fluorescence excitation. Anal Chem 71:2108–2116. doi:10.1021/ac9811221

    Article  Google Scholar 

  18. Fujita H, Nakano M, Takahata M, Yamaguchi K (2002) A new strategy of enhancing two-photon absorption in conjugated molecules: introduction of charged defects. Chem Phys Lett 358:435–441. doi:10.1016/S0009-2614(02)00674-7

    Article  CAS  Google Scholar 

  19. Wu L-Z, Tang X-J, Jiang M-H, Tung C-H (1999) Two-photon induced fluorescence of novel dyes. Chem Phys Lett 315:379–382. doi:10.1016/S0009-2614(99)01118-5

    Article  CAS  Google Scholar 

  20. Kovalska VB, Kryvorotenko DV, Balanda AO, Losytskyy MY, Tokar VP, Yarmoluk SM (2005) Fluorescent homodimer styrylcyanines: synthesis and spectral-luminescent studies in nucleic acids and protein complexes. Dyes Pigments 67:47–54. doi:10.1016/j.dyepig.2004.10.007

    Article  CAS  Google Scholar 

  21. Tokar VP, Losytskyy MY, Kovalska VB, Kryvorotenko DV, Balanda AO, Prokopets VM, Galak MP, Dmytruk IM, Yashchuk VM, Yarmoluk SM (2006) Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation. J Fluoresc 16(6):783–791. doi:10.1007/s10895-006-0127-3

    Article  CAS  PubMed  Google Scholar 

  22. Akbay N, Losytskyy MY, Kovalska VB, Balanda AO, Yarmoluk SM (2008) The mechanism of benzothiazole styrylcyanine dyes binding with dsDNA: studies by spectral-luminescent methods. J Fluoresc 18(1):139–147. doi:10.1007/s10895-007-0252-7

    Article  CAS  PubMed  Google Scholar 

  23. Losytskyy MY, Akbay N, Kovalska VB, Balanda AO, Boutorine A, Yarmoluk SM (2007) To the studies of (p-dimethylaminostyryl)pyridinium based homodimer to dsDNA binding mechanism. Ukrainica Bioorganica Acta 5(2):52–55

    CAS  Google Scholar 

  24. Yashchuk VM, Kudrya VY, Losytskyy MY, Tokar VP, Yarmoluk SM, Dmytruk IM, Prokopets VM, Kovalska VB, Balanda AO, Kryvorotenko DV, Ogul'chansky TY (2007) The optical biomedical sensors for DNA detection and imaging based on two-photon excited luminescent styryl dyes: phototoxic influence on the DNA. Proc. SPIE 6796, 67960M, 14 p

    Google Scholar 

  25. Zheng Q, Ohulchanskyy TY, Sahoo Y, Prasad PN (2007) Water-dispersible polymeric structure co-encapsulating a novel hexa-peri-hexabenzocoronene core containing chromophore with enhanced two-photon absorption and magnetic nanoparticles for magnetically guided two-photon cellular imaging. J Phys Chem C 111(45):16846–16851. doi:10.1021/jp074713g

    Article  CAS  Google Scholar 

  26. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675. doi:10.1021/ja0680257

    Article  CAS  PubMed  Google Scholar 

  27. Cinteza LO, Ohulchanskyy TY, Sahoo Y, Bergey EJ, Pandey RK, Prasad PN (2006) Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol Pharm 3(4):415–423. doi:10.1021/mp060015p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work was supported by the Science and Technology Center in Ukraine (grant # U3104k). We are grateful to the National Academy of Sciences of Ukraine (NASU) for providing us with possibility to use the “Laser Femtosecond Complex” at the Institute of Physics of NASU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy M. Yarmoluk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokar, V.P., Losytskyy, M.Y., Ohulchanskyy, T.Y. et al. Styryl Dyes as Two-Photon Excited Fluorescent Probes for DNA Detection and Two-Photon Laser Scanning Fluorescence Microscopy of Living Cells. J Fluoresc 20, 865–872 (2010). https://doi.org/10.1007/s10895-010-0630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0630-4

Keywords

Navigation