Skip to main content
Log in

Comparison of Artemia–bacteria associations in brines, laboratory cultures and the gut environment: a study based on Chilean hypersaline environments

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The brine shrimp Artemia (Crustacea) and a diversity of halophilic microorganisms coexist in natural brines, salterns and laboratory cultures; part of such environmental microbial diversity is represented in the gut of Artemia individuals. Bacterial diversity in these environments was assessed by 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) fingerprinting. Eight natural locations in Chile, where A. franciscana or A. persimilis occur, were sampled for analysis of free-living and gut-associated bacteria in water from nature and laboratory cultures. The highest ecological diversity (Shannon’s index, H’) was found in brines, it decreased in the gut of wild and laboratory animals, and in laboratory water. Significant differences in H’ existed between brines and laboratory water, and between brines and gut of wild animals. The greatest similarity of bacterial community composition was between brines and the gut of field animals, suggesting a transient state of the gut microbiota. Sequences retrieved from DGGE patterns (n = 83) exhibited an average of 97.8 % identity with 41 bacterial genera from the phyla Proteobacteria (55.4 % of sequences match), Bacteroidetes (22.9 %), Actinobacteria (16.9 %) and Firmicutes (4.8 %). Environment-exclusive genera distribution was seen in Sphingomonas and Paenibacillus (gut of field animals), Amaricoccus and Ornithinimicrobium (gut of laboratory animals), and Hydrogenophaga (water of laboratory cultures). The reported ecological and physiological capabilities of such bacteria can help to understand Artemia adaptation to natural and laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Microbial community of salt crystals processed from Mediterranean seawater based on 16S rRNA analysis. Can J Microbiol 56:44–51

    Article  CAS  PubMed  Google Scholar 

  • Benlloch S, López-López A, Casamayor EO et al (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Cánovas D, Vargas C, Calderón MI, Ventosa A, Nieto JJ (1998) Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol 21:487–497

    Article  PubMed  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, De Santis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casamayor EO, Schäfer H, Bañeras H, Pedrós-Alió C, Muyzer G (2000) Identification of spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Overeas L, Diez B, Goddard V et al (2002) Changes in archaeal, bacterial, and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Casamayor EO, Triadó-Margarit XC, Castañeda C (2013) Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiol Ecol 85:503–518

    Article  CAS  PubMed  Google Scholar 

  • Castro TB, Gajardo G, Castro M, Castro GM (2006) A biometric and ecologic comparison between Artemia from México and Chile. Saline Syst. doi:10.1186/1746-1448-2-13

    PubMed Central  PubMed  Google Scholar 

  • Clegg JS, Trotman C (2002) Physiological and biochemical aspects of Artemia ecology. In: Abatzopoulos Th, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 129–159

    Chapter  Google Scholar 

  • Clegg JS, Gajardo G (2009) Two highly diverged New World Artemia species A. franciscana and A. persimilis, from contrasting hypersaline habitats express a conserved stress protein complement. Comp Biochem Physiol A 153:451–456

  • Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Defoirdt T, Halet D, Vervaeren H, Boon N, Van de Wiele T, Sorgeloos P et al (2007) The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9:445–452

    Article  CAS  PubMed  Google Scholar 

  • Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69

    Article  CAS  PubMed  Google Scholar 

  • Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504

    Article  CAS  PubMed  Google Scholar 

  • Demergasso C, Dorador C, Meneses D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J Geophys Res. doi:10.1029/2008JG000836

    Google Scholar 

  • Dhont J, Sorgeloos P (2002) Applications of Artemia. In: Abatzopoulos Th, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 251–277

    Chapter  Google Scholar 

  • Dorador C, Vila I, Imhoff JF, Witzel KP (2008) Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion. FEMS Microbiol Ecol 64:419–432

    Article  CAS  PubMed  Google Scholar 

  • Dorador C, Meneses D, Urtuvia V, Demergasso C, Vila I, Witzel KP, Imhoff JF (2009) Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile. J Geophys Res. doi:10.1029/2008JG000837

    Google Scholar 

  • Dumestre JF, Casamayor EO, Massana R, Pedrós-Alió C (2002) Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana). Aquat Microb Ecol 26:209–221

    Article  Google Scholar 

  • Estrada M, Hendriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293

    Article  CAS  PubMed  Google Scholar 

  • Falvo A, Levantesi C, Rossetti S, Seviour RJ, Tandoi V (2001) Synthesis of intracellular storage polymers by Amaricoccus kaplicensis, a tetrad forming bacterium present in activated sludge. J Appl Microbiol 91:299–305

    Article  CAS  PubMed  Google Scholar 

  • Fraune S, Bosch TC (2010) Why bacteria matter in animal development and evolution. BioEssays 32:571–580

    Article  CAS  PubMed  Google Scholar 

  • Gajardo GM, Beardmore JA (1993) Electrophoretic evidence suggests that the Artemia found in the Salar de Atacama, Chile, is A. franciscana Kellogg. Hydrobiologia 257:65–71

    Article  Google Scholar 

  • Gajardo G, Abatzopoulos T, Kappas I, Beardmore J (2002) Evolution and speciation. In: Abatzopoulos Th, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 225–250

    Chapter  Google Scholar 

  • Gajardo G, Beardmore J (2012) The brine shrimp Artemia: adapted to critical life conditions. Front Physiol. doi:10.3389/fphys.2012.00185

    PubMed Central  PubMed  Google Scholar 

  • Gasol JM, Casamayor EO, Join I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206

    Article  Google Scholar 

  • Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB et al (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep. doi:10.1038/srep00135

    PubMed Central  PubMed  Google Scholar 

  • Gorospe JN, Nakamura K, Abe M, Higashi S (1996) Nutritional contribution of Pseudomonas sp. in Artemia culture. Fisheries Sci 62:914–918

    CAS  Google Scholar 

  • Halet D, Defoirdt T, Van Damme P, Vervaeren H et al (2007) Poly-β-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol 60:363–369

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microbial Ecol 25:195–231

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Intriago P, Jones DA (1993) Bacteria as food for Artemia. Aquaculture 113:115–127

    Article  Google Scholar 

  • Jones P, Kannan K, Newsted JL, Tillitt DE, Williams LL, Giesy JP (2001) Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin by rainbow trout (Oncorhynchus mykiss) at environmentally relevant dietary concentrations. Environ Toxicol Chem 20:344–350

    Article  CAS  PubMed  Google Scholar 

  • Kalle K (1971) Salinity marine ecology. In: Kinne O (ed) A comprehensive, integrated treatise on life in ocean and coastal waters. Wiley, New York, pp 683–688

    Google Scholar 

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. Food and Agriculture Organization (FAO), Germany, p 361

    Google Scholar 

  • Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marques A, Dinh T, Ioakeimidis C, Huys G et al (2005) Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Appl Environ Microb 71:4307–4317

    Article  CAS  Google Scholar 

  • Mura G, Gajardo G (2011) The highly divergent New World Artemia species (Branchiopoda, Anostraca), A. franciscana and A. persimilis, show subtle differences in morphological traits involved in mating. Zootaxa 2912:37–48

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59:695–700

    CAS  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Defoirdt T, Rekecki A, De Schryver P, Van den Broeck W, Dong S, Sorgeloos P, Boon N, Bossier P (2012) A method for the specific detection of resident bacteria in brine shrimp larvae. J Microbiol Meth 89:33–37

    Article  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. doi:10.1186/1746-1448-4-2

    PubMed Central  PubMed  Google Scholar 

  • Orozco-Medina C, Maeda-Martìnez AM, López-Cortés A (2002) Effect of aerobic Gram-positive heterotrophic bacteria associated with Artemia franciscana cysts on the survival and development of its larvae. Aquaculture 213:15–29

    Article  Google Scholar 

  • Orozco-Medina C, Lopez-Cortes A, Maeda-Martinez AM (2009) Aerobic gram-positive heterotrophic bacteria Exiguobacterium mexicanum and Microbacterium sp. in the gut lumen of Artemia franciscana larvae under gnotobiotic conditions. Curr Sci India 96:120–129

    CAS  Google Scholar 

  • Riddle MR, Baxter BK, Avery BJ (2013) Molecular identification of microorganisms associated with the brine shrimp Artemia franciscana. Aquat Biosyst. doi:10.1186/2046-9063-9-7

    PubMed Central  PubMed  Google Scholar 

  • Savage A, Knott B (1998) Artemia parthenogenetica in Lake Hayward, Western Australia. II. Feeding biology in a shallow, seasonally stratified, hypersaline lake. Int J Salt Lake Res 7:13–24

    Google Scholar 

  • Seoka M, Kurata M, Kumai H (2007) Effect of docosahexaenoic acid enrichment in Artemia on growth of Pacific bluefin tuna Thunnus orientalis larvae. Aquaculture 270:193–199

    Article  CAS  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. P Natl Acad Sci USA 107:20051–20056

    Article  CAS  Google Scholar 

  • Stivaletta N, Barbieri R, Cevenini F, Lopez-Garcia P (2011) Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol J 28:83–95

    Article  CAS  Google Scholar 

  • Tkavc R, Ausec L, Oren A, Gunde-Cimerman N (2011) Bacteria associated with Artemia spp. along the salinity gradient of the solar salterns at Eilat (Israel). FEMS Microbiol Ecol 77:310–321

    Article  CAS  PubMed  Google Scholar 

  • Toft C, Andersson SG (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475

    Article  CAS  PubMed  Google Scholar 

  • Toi HT, Boeckx P, Sorgeloos P, Bossier P, Van Stappen G (2013) Bacteria contribute to Artemia nutrition in algae-limited conditions: a laboratory study. Aquaculture. doi:10.1016/j.aquaculture.2013.01.005

    Google Scholar 

  • Triadó-Margarit X, Casamayor EO (2013) High genetic diversity and high novelty in planktonic protists inhabiting inland and coastal high salinity water bodies. FEMS Microbiol Ecol 85:27–36

    Article  PubMed  Google Scholar 

  • Van Stappen G (2002) Zoogeography. In: Abatzopoulos Th, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 171–215

    Chapter  Google Scholar 

  • Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J et al (2008) Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Syst. doi:10.1186/1746-1448-4-14

    PubMed Central  PubMed  Google Scholar 

  • Villamil L, Figueras A, Planas M, Novoa B (2003) Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture 219:43–56

    Article  Google Scholar 

  • Wharton D (2007) Life at the Limits. Organisms in extreme environments. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511541568

    Google Scholar 

  • Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T, Fujiwara N, Kobayashi K, Kosako Y, Hiraishi A (2001) Proposal of Sphingomonas wittichii sp. nov. for strain RW1(T), known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292

    CAS  PubMed  Google Scholar 

  • Yoon JH, Kang SJ, Jung YT, Oh TK (2009) Psychroflexus salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Micr 59:2404–2407

    Article  CAS  Google Scholar 

  • Zafrilla B, Martínez-Espinosa RM, Alonso MA, Bonete MJ (2010) Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley. Saline Syst, Spain. doi:10.1186/1746-1448-6-10

    Google Scholar 

Download references

Acknowledgments

Mauricio Quiroz acknowledges project FONDEF D09I1256 (Artemia), National Commission for Scientific and Technological Research (CONICYT), Chile, for support to carry out this work at the Centre for Advanced Studies of Blanes (CEAB), Girona, Spain, which is part of his Master thesis in Natural Resources at Universidad de los Lagos, Osorno. Work in Spain was supported by project DARKNESS (CGL2012-32747) from the Spanish Office of Science (MINECO) to EOC. Two anonymous reviewers made highly constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Gajardo.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroz, M., Triadó-Margarit, X., Casamayor, E.O. et al. Comparison of Artemia–bacteria associations in brines, laboratory cultures and the gut environment: a study based on Chilean hypersaline environments. Extremophiles 19, 135–147 (2015). https://doi.org/10.1007/s00792-014-0694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0694-1

Keywords

Navigation