Skip to main content

Advertisement

Log in

Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Understanding plant behaviour in polluted soils is critical for the sustainable remediation of metal-polluted sites including abandoned mines. Post-operational and abandoned metal mines particularly in semi-arid and arid zones are one of the major sources of pollution by soil erosion or plant hyperaccumulation bringing ecological impacts. We have selected from the literature 157 species belonging to 50 families to present a global overview of ‘plants under action’ against heavy metal pollution. Generally, all species of plants that are drought, salt and metal tolerant are candidates of interest to deal with harsh environmental conditions, particularly at semi-arid and arid mine sites. Pioneer metallophytes namely Atriplex nummularia, Atriplex semibaccata, Salsola kali, Phragmites australis and Medicago sativa, representing the taxonomic orders Caryophyllales, Poales and Fabales are evaluated in terms of phytoremediation in this review. Phytoremediation processes, microbial and algal bioremediation, the use and implication of tissue culture and biotechnology are critically examined. Overall, an integration of available remediation plant-based technologies, referred to here as ‘integrated remediation technology,’ is proposed to be one of the possible ways ahead to effectively address problems of toxic heavy metal pollution.

Integrated remediation technology (IRT) in metal-contaminated semi-arid and arid conditions. The hexagonal red line represents an IRT concept based on remediation decisions by combination of plants and microbial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alday JG, Marrs RH, Martínez-Ruiz C (2011) Vegetation succession on reclaimed coal wastes in Spain: the influence of soil and environmental factors. Appl Veg Sci 14(1):84–94

    Article  Google Scholar 

  • Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239(1):103–111

    Article  CAS  Google Scholar 

  • Amer N, Chami ZA, Bitar LA, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediation 15(5):498–512

    Article  CAS  Google Scholar 

  • Archer MJG, Caldwell RA (2004) Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Pollut 157(1–4):257–267

    Article  CAS  Google Scholar 

  • Atwell BJ, Kriedemann PE & Turnbull CG (1999) Plants in action: adaptation in nature, performance in cultivation. Macmillan Education

  • Baker AJM (2014) Metallophytes: a biodiversity and phytotechnological resource for soil decontamination, phytomining and mine site restoration. Acta Biol Cracov Ser Bot Suppl 2(56)

  • Banuelos G (2006) Multi-faceted considerations for sustainable phytoremediation under field conditions. For Snow Landsc Res 80(2)

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7(3):191–204

    Article  CAS  Google Scholar 

  • Baunthiyal M (2014) Engineering plants for phytoremediation. In: Advances in biotechnology (pp. 227–240). Springer India

  • Black JM (1909) The naturalised flora of South Australia, Adelaide: Australia

  • Bothe, H. 2011. Plants in heavy metal soils. In: Detoxification of heavy metals (pp. 35–57). Springer Berlin Heidelberg

  • Boyes LJ, Gunton RM, Griffiths ME, Lawes MJ (2011) Causes of arrested succession in coastal dune forest. Plant Ecol 212(1):21–32

    Article  Google Scholar 

  • Bremer K (2002) Gondwanan evolution of the grass alliance of families (Poales). Evolution 56:1374–1387

    Article  CAS  Google Scholar 

  • Brewin LE, Mehra A, Lynch PT, Farago ME (2003) Mechanisms of copper tolerance by Armeria maritima in Dolfrwynog Bog, North Wales—initial studies. Environ Geochem Health 25(1):147–156

    Article  CAS  Google Scholar 

  • Browne W, Franks DM & Kendall G (2011) The foundations for responsible mining in Cambodia—suggested approaches. UNDP

  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318(1–2):285–298

    Article  CAS  Google Scholar 

  • Bullock DM (1936) Atriplex semibaccata as influenced by certain environmental conditions. Ecology 17(2):263–269

    Article  Google Scholar 

  • Byrne M, Stone L, Millar MA (2011) Assessing genetic risk in revegetation. J Appl Ecol 48(6):1365–1373

    Article  Google Scholar 

  • Cao X (2007) Regulating mine land reclamation in developing countries: the case of China. Land Use Policy 24(2):472–483

    Article  Google Scholar 

  • Cano-Aguilera I, Cruz-Jimenez G, De La Rosa G, Sharma NC, Gardea-Torresdey JL, Sahi SV, Duarte-Gardea M, Martinez-Martinez A, Peralta-Videa JR (2007) Role of ethylenediaminetetraacetic acid on lead uptake and translocation by tumbleweed (Salsola kali L.). Environ Toxicol Chem 26(5):1033–1039

    Article  Google Scholar 

  • Cetin SC, Karaca A, Kizilkaya R & Turgay OC (2011) Role of plant growth promoting bacteria and fungi in heavy metal detoxification. In: Detoxification of heavy metals (pp. 369–388). Springer Berlin Heidelberg

  • Cetinkaya G, Sozen N (2011) Plant species potentially useful in the phytostabilization process for the abandoned CMC mining site in northern Cyprus. Int J Phytoremediation 13(7):681–691

    Article  Google Scholar 

  • Chaney RL, Ryan JA, Li YM, Welch RM, Reeves PG, Brown SL, Green CE (1996) Phyto-availability and bio-availability in risk assessment for cadmium in agricultural environments. Sources of Cadmium in the Environment, pp.49–78

  • Chaturvedi S, Chandra R, Rai V (2006) Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol Eng 27(3):202–207

    Article  Google Scholar 

  • Chekol T, Vough LR (2001) A study of the use of alfalfa (Medicago sativa L.) for the phytoremediation of organic contaminants in soil. Remediat J 11(4):89–101

    Article  Google Scholar 

  • Chen CR, Xu ZH (2005) Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. For Ecol Manag 206(1):237–247

    Article  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798

    Article  CAS  Google Scholar 

  • Claveria R, De los Santos C, Teodoro K, Rellosa M, Vallera N (2010) The identification of metallophytes in the Fe and Cu enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their implications to phytoremediation. Sci Diliman 21(2):1–12

    Google Scholar 

  • Cousins SR, Witkowski ETF (2012) African aloe ecology: a review. J Arid Environ 85:1–17

    Article  Google Scholar 

  • Dahmani-Muller H, Van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109(2):231–238

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11(8):664–691

    Article  CAS  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed ( Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55(9):1159–1168

    Article  CAS  Google Scholar 

  • de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  CAS  Google Scholar 

  • De Villiers AJ, Van Rooyen MW, Theron GK, Claassens AS (1995) The effect of leaching and irrigation on the growth of Atriplex semibaccata. Land Degrad Dev 6(2):125–131

    Article  Google Scholar 

  • de- Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18(1):82–90

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Dodman D (2009) Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ Urban 21(1):185–201

    Article  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103(1):60–76

    Article  CAS  Google Scholar 

  • Duque JM, Zapico I, Oyarzun R, García JL, Cubas P (2015) A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: new insights and environmental implications from SE Spain. Geomorphology 239:1–16

    Article  Google Scholar 

  • Ernst, W.H.O 1996, Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121(1):66–74

    Article  CAS  Google Scholar 

  • Evangelou MW, Robinson BH, Günthardt-Goerg MS, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediation 15(1):77–90

    Article  CAS  Google Scholar 

  • Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71(8):1593–1598

    Article  CAS  Google Scholar 

  • Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175

    Article  CAS  Google Scholar 

  • Fine P (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46(1):369–392

    Article  Google Scholar 

  • Fior S, Karis PO, Casazza G, Minuto L, Sala F (2006) Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences. Am J Bot 93(3):399–411

    Article  CAS  Google Scholar 

  • Förstner U & Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media

  • Foundation of Ecological Security (FES) (2008) A source book for ecological restoration

  • Fulekar, M. H. (Ed.). 2012. Bioremediation technology: recent advances. Springer

  • Gaff DF, Churchill DM (1976) Borya nitida Labill.—an Australian species in the Liliaceae with desiccation-tolerant leaves. Aust J Bot 24(2):209–224

    Article  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, de La Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249(17):1797–1810

    Article  CAS  Google Scholar 

  • Gawronski SW, Greger M & Gawronska H (2011) Plant taxonomy and metal phytoremediation. In: Detoxification of heavy metals (pp. 91–109). Springer Berlin Heidelberg

  • González RC, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144(1):84–92

    Article  CAS  Google Scholar 

  • Groninger J, Skousen J, Angel P, Barton C, Burger J, Zipper C (2007) Mine reclamation practices to enhance forest development through natural succession. The Appalachian Regional Reforestation Initiative. USDI Office of Surface Mining Reclamation and Enforcement, Washington, DC

    Google Scholar 

  • Guo X, Komnitsas K, Li D (2010) Correlation between herbaceous species and environmental variables at the abandoned Haizhou coal mining site. Environ Forensic 11(1–2):146–153

    Article  CAS  Google Scholar 

  • Guo Z, Megharaj M, Beer M, Ming H, Mahmudur Rahman M, Wu W, Naidu R (2009) Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100(17):3831–3836

    Article  CAS  Google Scholar 

  • Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87(4):1271–1280

    Article  CAS  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14(3):252–259

    Article  CAS  Google Scholar 

  • Haque AN, Dodman D & Hossain MM (2014) Individual, communal and institutional responses to climate change by low-income households in Khulna, Bangladesh. Environment and Urbanization, 0956247813518681

  • Hasan S, Sobhian R, Herard F (2001) Biology, impact and preliminary host-specificity testing of the rust fungus, Uromyces salsolae, a potential biological control agent for Salsola kali in the USA. Biocontrol Sci Tech 11(6):677–689

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Himley M (2014) Mining history: mobilizing the past in struggles over mineral extraction in Peru. Geogr Rev 104(2):174–191

    Article  Google Scholar 

  • Hoffmann JH, Impson FAC, Moran VC, Donnelly D (2002) Biological control of invasive golden wattle trees (Acacia pycnantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae) in South Africa. Biol Control 25(1):64–73

    Article  Google Scholar 

  • Hongbo S, Liye C, Gang X, Kun Y, Lihua Z & Junna S (2011) Progress in phytoremediating heavy-metal contaminated soils. In: Detoxification of heavy metals (pp. 73–90). Springer Berlin Heidelberg

  • Hudson N (1987) Soil and water conservation in semi-arid areas (no. 57). Food & Agriculture Organisation

  • Isayenkov S, Fester T, Hause B (2004) Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J Plant Physiol 161(12):1379–1383

    Article  CAS  Google Scholar 

  • Jacobs SW and Wilson KL (2002) Poales: encyclopedia of life sciences. Macmillan Publishers Ltd, Nature Publishing group. Royal Botanic Gardens, Sydney, New South Wales, Australia. http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0003708/pdf

  • Jefferson LV (2004) Implications of plant density on the resulting community structure of mine site land. Restor Ecol 12(3):429–438

    Article  Google Scholar 

  • Johansson L, Xydas C, Messios N, Stoltz E, Greger M (2005) Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus. Appl Geochem 20(1):101–107

    Article  CAS  Google Scholar 

  • Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92(2):336–342

    Article  CAS  Google Scholar 

  • Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164(6):959–986

    Article  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1):197–207

    Article  CAS  Google Scholar 

  • Kim CS, Anthony TL, Goldstein D, Rytuba JJ (2014) Windborne transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California. Aeolian Res 14:85–96

    Article  Google Scholar 

  • Komal T, Mustafa M, Ali Z & Kazi AG (2015) Heavy metal uptake and transport in plants. In: Heavy metal contamination of soils (pp. 181–194). Springer International Publishing

  • Kramer PA, Zabowski D, Scherer G, Everett RL (2000) Native plant restoration of copper mine tailings: II. Field survival, growth, and nutrient uptake. J Environ Qual 29(6):1770–1777

    Article  CAS  Google Scholar 

  • Krumins JA, Goodey NM, Gallagher F (2015) Plant–soil interactions in metal contaminated soils. Soil Biol Biochem 80:224–231

    Article  CAS  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K & Naidu R (2016) Ex-situ remediation technologies for environmental pollutants: a critical perspective. In: Reviews of environmental contamination and toxicology, volume 236 (pp. 117–192). Springer International Publishing

  • Kurek E & Majewska M (2012) Microbially mediated transformations of heavy metals in rhizosphere. In: Toxicity of heavy metals to legumes and bioremediation (pp. 129–146). Springer Vienna

  • Kutsche F & Lay BG (2003) Field guide to the plants of Outback South Australia. Department of Water, Land and Biodiversity Conservation

  • Lal N & Srivastava N (2010) Phytoremediation of toxic explosives. In: Plant adaptation and phytoremediation (pp. 383–397). Springer Netherlands

  • Lamb DT, Ming H, Megharaj M, Naidu R (2010) Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Arch Environ Contam Toxicol 59(3):424–432

    Article  CAS  Google Scholar 

  • Lamb D, Erskine PD, Fletcher A (2015) Widening gap between expectations and practice in Australian minesite rehabilitation. Ecol Manag Restor 16(3):186–195

    Article  Google Scholar 

  • Le Houerou HN (2000) Restoration and rehabilitation of arid and semi-arid Mediterranean ecosystems in North Africa and West Asia: a review. Arid Soil Res Rehabil 14(1):3–14

    Article  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357(1):38–53

    Article  CAS  Google Scholar 

  • Lledó MD, Crespo MB, Fay MF, Chase MW (2005) Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications. Am J Bot 92(7):1189–1198

    Article  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Article  CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61(4):595–598

    Article  CAS  Google Scholar 

  • Lottermoser BG (2010) Mine Wastes, characterization, treatment and environmental impacts. Dordrecht, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG

  • Loutseti S, Danielidis DB, Economou-Amilli A, Katsaros C, Santas R, Santas P (2009) The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. Bioresour Technol 100(7):2099–2105

    Article  CAS  Google Scholar 

  • Luo Q, Catney P, Lerner D (2009) Risk-based management of contaminated land in the UK: lessons for China? J Environ Manag 90(2):1123–1134

    Article  CAS  Google Scholar 

  • Mackasey WOB (2000) Abandoned mines in Canada, Mining Watch Canada, WOM Geological Associates Inc. 140 Crater Crescent Sudbury, Ontario. http://www.miningwatch.ca/sites/www.miningwatch.ca/files/Mackasey_abandoned_mines_0.pdf

  • Macnair MR & Baker AJ (1994) Metal-tolerant plants: an evolutionary perspective. Plants and the chemical elements—biochemistry, uptake, tolerance and toxicity, 67–85

  • Maddocks G, Lin C, McConchie D (2009) Field scale remediation of mine wastes at an abandoned gold mine, Australia II: effects on plant growth and groundwater. Environ Geol 57(5):987–996

    Article  CAS  Google Scholar 

  • Mandal SM & Bhattacharyya R (2012) Rhizobium–legume symbiosis: a model system for the recovery of metal-contaminated agricultural land. In: Toxicity of heavy metals to legumes and bioremediation (pp. 115–127). Springer Vienna

  • Martínez-Fernández D, Walker DJ (2012) The effects of soil amendments on the growth of Atriplex halimus and Bituminaria bituminosa in heavy metal-contaminated soils. Water Air Soil Pollut 223(1):63–72

    Article  CAS  Google Scholar 

  • McSwane D, French J & Klein R (2015) Environmental health and safety. In: Regulatory foundations for the food protection professional (pp. 125–141). Springer New York

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assunção A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249(1):187–202

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008a) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008b) Phytostabilization of mine tailings in arid and semi-arid environments—an emerging remediation technology. Environ Health Perspect 116(3):278

    Article  CAS  Google Scholar 

  • Mok HF, Majumder R, Laidlaw WS, Gregory D, Baker AJ, Arndt SK (2013) Native Australian species are effective in extracting multiple heavy metals from biosolids. Int J Phytoremediation 15(7):615–632

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162(2):854–859

    Article  CAS  Google Scholar 

  • Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8(3):18

    Article  Google Scholar 

  • Nirola R, Jha PK (2013) Phytodiversity and soil study of Shiwalik hilla of Ilam, Nepal: an ecological perspective. Ecoprint Int J Ecol 18:77–83

    Google Scholar 

  • Nirola R, Megharaj M, Aryal R, Naidu R (2016) Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int J Phytorem 18:399–405

  • Nirola R, Megharaj M, Palanisami T, Aryal R, Venkateswarlu K (2015) Evaluation of interaction of major native-trees colonizing an abandoned copper mine soil with heavy metals; a quest for phytostabilization. J Sustain Mining 14:114–123

  • Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ Earth Sci 62(3):639–644

    Article  CAS  Google Scholar 

  • Orchard AE, Wilson A (2001) Flora of Australia (vol. 11). CSIRO 

  • Paleg LG, Aspinall D (1981) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney

    Google Scholar 

  • Pascaud G, Boussen S, Soubrand M, Joussein E, Fondaneche P, Abdeljaouad S, Bril H (2015) Particulate transport and risk assessment of Cd, Pb and Zn in a Wadi contaminated by runoff from mining wastes in a carbonated semi-arid context. J Geochem Explor 152:27–36

    Article  CAS  Google Scholar 

  • Pathak V, Tripathi BD, Mishra VK (2011) Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For Urban Green 10(1):61–66

    Article  Google Scholar 

  • Perlatti F, Otero XL, Macias F, Ferreira TO (2014) Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes. Sci Total Environ 500:91–102

    Article  CAS  Google Scholar 

  • Peters TH (1988). Mine tailings reclamation. Inco Limited’s experience with the reclaiming of sulphide tailings in the Sudbury area, Ontario, Canada. In: Environmental management of solid waste (pp. 152–165). Springer Berlin Heidelberg

  • Peters TH (1995) Revegetation of the Copper Cliff tailings area. In: Restoration and recovery of an industrial region (pp. 123–133). Springer New York

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21(6):539–566

    Article  CAS  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  CAS  Google Scholar 

  • Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16(3):363–366

    Article  Google Scholar 

  • Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  Google Scholar 

  • Rajendran P & Gunasekaran P (2007) Nanotechnology for bioremediation of heavy metals. In: Environmental bioremediation technologies (pp. 211–221). Springer Berlin Heidelberg

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N & Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. In: Reviews of environmental contamination and toxicology, Volume 211 (pp. 63–120). Springer New York

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MG (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170(4):753–766

    Article  CAS  Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Botany 85(3):237–251

    CAS  Google Scholar 

  • Rufaut CG, Craw D (2010) Geoecology of ecosystem recovery at an inactive coal mine site, New Zealand. Environ Earth Sci 60(7):1425–1437

    Article  CAS  Google Scholar 

  • Russell DL (2012) Remediation manual for contaminated sites. Taylor & Francis, CRC Press, Boca Raton, FL

    Google Scholar 

  • Saad L, Parmentier I, Colinet G, Malaisse F, Faucon MP, Meerts P, Mahy G (2012) Investigating the vegetation–soil relationships on the copper–cobalt rock outcrops of Katanga (DR Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20(3):405–415

    Article  Google Scholar 

  • Sadik W (2011) Environmental nanotechnology. J Environ Monit 13(5):1131

    Article  CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    Article  CAS  Google Scholar 

  • Shekhawat VPS, Kumar A, Neumann KH (2006) Effect of sodium chloride salinity on growth and ion accumulation in some halophytes. Commun Soil Sci Plant Anal 37(13–14):1933–1946

    Article  CAS  Google Scholar 

  • Shrestha RK, Lal R (2008) Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil 306(1–2):249–260

    Article  CAS  Google Scholar 

  • Sinegani AAS (2007) Temporal and spatial variability of lead levels in Salsola kali near Razan-Hamadan highway. J Appl Sci Environ Manag 11(3):143–146

    Google Scholar 

  • Singare PU, Bhattacharjee SS, Lokhande RS (2013) Analysis of the heavy metal pollutants in sediment samples collected from Thane Creek of Maharashtra, India. Int J Sustain Soc 5(3):296–308

    Article  Google Scholar 

  • Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366

    Article  CAS  Google Scholar 

  • Singh D, Singh B, Goel RK (2011) Traditional uses, phytochemistry and pharmacology of Ficus religiosa: a review. J Ethnopharmacol 134(3):565–583

    Article  CAS  Google Scholar 

  • Singh SN & Tripathi RD (2007) Environmental bioremediation technologies. Springer

  • Sinha RK, Herat S, Valani D, Chauhan K (2010) Earthworms—the environmental engineers: review of vermiculture technologies for environmental management and resource development. Int J Glob Environ Issues 10(3):265–292

    Article  Google Scholar 

  • Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128(3):307–315

    Article  CAS  Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):9

    Google Scholar 

  • Stephens PF (2001) Angiosperm phylogeny website. Version 8, June 2007. http://www.mobot.org/MOBOT/Research/APweb/

  • Stevens PF (7 May 2006). Angiosperm phylogeny website. Missouri Botanical Garden. Retrieved 2006-11-20. http://www.mobot.org/MOBOT/research/APweb/)

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907

    Article  CAS  Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Neuville M, Sarangi R, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157(4):1914–1925

    Article  CAS  Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1):219–228

    Article  CAS  Google Scholar 

  • Unger CJ, Lechner AM, Kenway J, Glenn V, Walton A (2015) A jurisdictional maturity model for risk management, accountability and continual improvement of abandoned mine remediation programs. Res Policy 43:1–10

    Article  Google Scholar 

  • United States Environment Protection Agency (USEPA) (2011) Toxic Release Inventory (TRI) Program, National Analysis Report, http://www.epa.gov/tri/

  • van de Graaff S, Unger C, Evans RB (2012) Abandoned mines survey, Aus IMM, Centre for Social Responsibility in Mining Sustainable Minerals Institute. The University of Queensland, Australia

    Google Scholar 

  • van Zyl D, Sassoon M, Digby C, Fleury AM & Kyeyune SB (2002) Mining for the Future, No 68, Commissioned by the MMSD project of IIED

  • Vranjic JA, Morin L, Reid AM, Groves RH (2012) Integrating revegetation with management methods to rehabilitate coastal vegetation invaded by Bitou bush (Chrysanthemoides monilifera ssp. rotundata) in Australia. Austral Ecol 37(1):78–89

    Article  Google Scholar 

  • Wait M (2012) DMR rehabilitates derelict and ownerless mines, not abandoned sites, Mining weekly, 17 September, viewed 11 Jan 2013, http://www.miningweekly.com/article/dmr-rehabilitates-derelict-and-ownerless-mines-not-abandoned-sites-2012-09-17

  • Wali MK (1999) Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil 213(1–2):195–220

    Article  CAS  Google Scholar 

  • Wang FH, Zhao B, Zhang F, Gao J, Hao HT & Zhang S (2015) A novel heavy metal chelating agent sixthio guanidine acid for in situ remediation of soils contaminated with multielements: its synthesis, solidification, biodegradability, and leachability. Journal of Soils and Sediments, 1–11

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221:1–18

    Google Scholar 

  • Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31(6):829–834

    Article  Google Scholar 

  • Whitbread-Abrutat PH (1997) The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant Soil 192(2):199–217

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chane RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12(1):106–116

    Article  Google Scholar 

  • Willey N, Fawcett K (2005) Species selection for phytoremediation of 36Cl/ 35Cl using angiosperm phylogeny and inter-taxa differences in uptake. Int J Phytoremediation 7(4):295–306

    Article  CAS  Google Scholar 

  • Yang XE, Ye HB, Long XX, He B, He ZL, Stoffella PJ, Calvert DV (2005) Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance. at different Cd/Zn supply levels. J Plant Nutr 27(11):1963–1977

    Article  CAS  Google Scholar 

  • Ye M, Li JT, Tian SN, Hu M, Yi S, Liao B (2009) Biogeochemical studies of metallophytes from four copper-enriched sites along the Yangtze River, China. Environ Geol 56(7):1313–1322

    Article  CAS  Google Scholar 

  • Zhang J, Gao R, Li M, Cao S & Liu S (2015) Basic characteristics and effective control of Gangue Piles in mining areas: a case study. J Residuals Sci Technol 12

  • Zhang X, Gao B, Xia H (2014) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol Environ Saf 106:102–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkrishna Nirola.

Additional information

Responsible editor: Elena Maestri

Highlights

• Description of metal pollution through operational and abandoned mine sites

• Phytoremediation in semi-arid and arid environmental conditions

• An insight into taxonomic discourse of listed metallophytes

• A modern approach to the challenges of revegetation, bioremediation and mine site rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirola, R., Megharaj, M., Beecham, S. et al. Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. Environ Sci Pollut Res 23, 20131–20150 (2016). https://doi.org/10.1007/s11356-016-7372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7372-z

Keywords

Navigation