Skip to main content

Advertisement

Log in

Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acute genotoxicity of commercial glyphosate (GLY) (Credit®)-, 2,4-D-acid (2,4-D) (Dedalo Elite)-, 2,4-D-amine (2,4-D DMA) (Weedar Full®)- and 2,4-D-ester (2,4-D BE) (Herbifen Super®)-based herbicide formulations alone and their combinations were analysed in Cnesterodon decemmaculatus. Mortality was evaluated as a lethal end-point and the single cell gel electrophoresis (SCGE) bioassay was used as a sublethal end-point. LC5096h values for Dedalo Elite was 0.46 mg/L and Herbifen Super® was 2.67 mg/L based on 2,4-D and 2,4-D BE, respectively. Results reveal a higher toxicity exerted on C. decemmaculatus after exposure to 2,4-D- rather than 2,4-D BE-based herbicide formulations. Overall, results demonstrated an enhancement in the genetic damage index committed to an enhancement of damaged erythrocytes of C. decemmaculatus when exposed to Credit®, Dedalo Elite, Weedar Full® and Herbifen Super® at 5% and 10% of LC5096h values alone as well as in their combinations. Overall, the combination of GLY plus 2,4-D or GLY plus 2,4-D DMA showed a synergistic pattern whereas the combination of GLY plus 2,4-D BE was antagonic. Furthermore, this research is pioneer in the assessment of lethality and genotoxicity induced by 2,4-D-, 2,4-D DMA- and 2,4-D BE-based formulations when combined with GLY-based formulated herbicides in fish after they are acutely exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander HC, Gersich FM, Mayes MA (1985) Acute toxicity of four phenoxy herbicides to aquatic organisms. Bull Environ Contam Toxicol 35:314–321

    CAS  Google Scholar 

  • Ateeq B, Farah MA, Ahmad W (2005) Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlororphenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicol Environ Saf 62:348–354

    CAS  Google Scholar 

  • Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87:949–968

    CAS  Google Scholar 

  • Bach NC, Marino DJG, Natale GS, Somoza GM (2018) Effects of glyphosate and its commercial formulation, Roundup® Ultramax, on liver histology of tadpoles of the neotropical frog, Leptodactylus latrans (Amphibia: Anura). Chemosphere 202:289–297

    CAS  Google Scholar 

  • Bills TD, Marking LL, Mauck WL (1981) Polychlorinated biphenyl (Aroclor 1254) residues in rainbow trout: effects on sensitivity to nine fishery chemicals. N Am J Fish Manag 1:200–203

    Google Scholar 

  • Blouin D, Webster E, Bond J (2010) On a method of analysis for synergistic and antagonistic joint-action effects with fenoxaprop mixtures in rice (Oryza sativa). Weed Technol 24:583–589

    CAS  Google Scholar 

  • Blouin DC, Webster EP, Wei Z (2004) Analysis of synergistic and antagonistic effects of herbicides using nonlinear mixed-model methodology. Weed Technol 18:464–472

    CAS  Google Scholar 

  • Bokán K, Syberg K, Jensen K, Rank J (2013) Genotoxic potential of two herbicides and their active ingredients assessed with comet assay on a fish cell line, epithelioma papillosum cyprini (EPC). J Toxicol Environ Health 76:1129–1137

    Google Scholar 

  • Brodeur JC, Melpel S, Anglesio AB, Cristos D, D'Andrea MF, Poliserpi MB (2016) Toxicities of glyphosate- and cypermethrin-based pesticides are antagonic in the tenspotted livebeared fish (Cnesterodon decemmaculatus). Chemosphere 155:429–435

    CAS  Google Scholar 

  • Brodeur JC, Poliserpi MB, D'Andrea MF, Sanchez M (2014) Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American toad Rhinella arenarum. Chemosphere 112:70–76

    CAS  Google Scholar 

  • Brooke L (1989) Results of freshwater exposures with the chemicals 2,4-D and diazinon to the larval leopard frog (Rana pipiens), juvenile fathead minnows (Pimephales promelas), larval midge (Chironomus riparius) and adult Oligochaete worms (Lumbriculus variegatus). United States Environmental Protection Agency February 15th Memo to RSpehar: 6 pp.

  • Carriquiriborde P, Díaz J, Mugni H, Bonetto C, Ronco AE (2007) Impact of cypermethrin on stream fish populations under field-use in biotech-soybean production. Chemosphere 68:613–621

    CAS  Google Scholar 

  • Carvalho WF, Ruiz de Arcaute C, Pérez-Iglesias JM, Laborde MRR, Soloneski S, Larramendy ML (2019) DNA damage exerted by mixtures of commercial formulations of glyphosate and imazethapyr herbicides in Rhinella arenarum (Anura, Bufonidae) tadpoles. Ecotoxicology 28:367–377

    CAS  Google Scholar 

  • CASAFE (2017) Guía de Productos Fitosanitarios para la República Argentina

  • Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat Res 655:41–46

    CAS  Google Scholar 

  • Cavaş T, Könen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268

    Google Scholar 

  • Cestari Moreno N, Sofia SH, Martinez CBR (2014) Genotoxic effects of the herbicide Roundup Transorb® and its active ingredient glyphosate on the fish Prochilodus lineatus. Environ Toxicol Pharmacol 37:448–454

    Google Scholar 

  • Collins A, Koppen G, Valdiglesias V, Dusinska M, Kruszewski M, Møller P, Rojas E, Dhawan A, Benzie I, Coskun E, Moretti M, Speit G, Bonassi S, ComNet project (2014) The comet assay as a tool for human biomonitoring studies: the ComNet Project. Mutat Res 759:27–39

    CAS  Google Scholar 

  • de Castilhos GN, Cestari MM (2013) Genotoxic effects of the herbicide Roundup® in the fish Corydoras paleatus (Jenyns 1842) after short-term, environmentally low concentration exposure. Environ Monit Assess 185:3201–3207

    Google Scholar 

  • Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56:516–520

    CAS  Google Scholar 

  • Di Giulio RT, Hinton DE (2008) The toxicology of fishes. CRC Press Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Rev Environ Res 28:137–167

    Google Scholar 

  • Furlong ET, Anderson BD, Werner SL, Soliven PP, Coffey LJ, Burkhardt MR (2011) Methods of analysis by the US Geological Survey National Water Quality Laboratory—determination of pesticides in water by graphitized carbon-based solid-phase extraction and high-performance liquid chromatography/mass spectrometry. US Geological Survey Water Resources Investigations Report 01–4134, 73

  • Ge H, Lin Z, Yao Z, Gao Z, Cong Y, Yu H (2014) Balance between herbicidal activity and toxicity effect: a case study of the joint effects of triazine and phenylurea herbicides on Selenastrum capricornutum and Photobacterium phosphoreum. Aquat Toxicol 150:165–174

    CAS  Google Scholar 

  • Guilherme S, Gaivão I, Santos MA, Pacheco M (2012) DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide—elucidation of organ-specificity and the role of oxidative stress. Mutat Res 743:1–9

    CAS  Google Scholar 

  • Guyton KZ, Loomis D, Grosse Y, el Ghissassi F, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, Straif K, International Agency for Research on Cancer Monograph Working Group, IARC, Lyon, France (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol 16:490–491

    Google Scholar 

  • Hernández AF, Gil F, Lacasaña M (2017) Toxicological interactions of pesticide mixtures: an update. Arch Toxicol 91:3211–3223

    Google Scholar 

  • Hughes JS (1973) Acute toxicity of thirty chemicals to striped bass (Morone saxatilis). Proceedings of the annual conference of the Western Association of State Game and Fish Commissioners: pp. 15.

  • IARC (2018) IARC Monographs of the evaluation of carcinogenic risks to humans. DDT, Lindane and 2,4-D vol 113. International Agency for Research on Cancer, Lyon

  • IPCS (1994) International Programme on Chemical Safety. Environmental health criteria 159. Glyphosate. World Health Organization, Geneva

  • IRAM (2008) Calidad ambiental-Calidad de agua. Determinación de la toxicidad letal aguda de sustancias en peces de agua dulce. Métodos semiestático. Instituto Argentino de Normalización y Certificación Norma 29112:23

  • Larramendy ML, Soloneski S (2014) Pesticides—toxic aspects. InTech Publisher, Rijeka

    Google Scholar 

  • Larramendy ML, Soloneski S (2015) Toxicity and hazard of agrochemicals. InTech Publisher, Rijeka

    Google Scholar 

  • Liu W, Li H, Tao F, Li S, Tian Z, Xie H (2013) Formation and contamination of PCDD/Fs, PCBs, PeCBz, HzCBz and polychlorophenols in the production of 2,4-D products. Chemosphere 92:304–308

    CAS  Google Scholar 

  • Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9:1–13

    Google Scholar 

  • Martínez-Tabche L, Madrigal-Bujaidar E, Negrete T (2004) Genotoxicity and lipoperoxidation produced by paraquat and 2,4-dichlorophenoxyacetic acid in the gills of rainbow trout (Oncorhynchus mikiss). Bull Environ Contam Toxicol 73:146–152

    Google Scholar 

  • Mayer FLJ (1972) Pesticides as pollutants. In: Liptak BG (ed) Environmental engineer’s handbook. Chilton Book Co., Radnor, pp 405–418

    Google Scholar 

  • Mayer FLJ, Ellersieck MR (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. USDI Fish Wildlife Serv 160:505

    Google Scholar 

  • Mazzatorta P, Benfenati E, Neagu D, Gini G (2002) The importance of scaling in data mining for toxicity prediction. J Chem Inf Model 42:1250–1255

    CAS  Google Scholar 

  • Mithila J, Hall CJ, Johnson WG, Kelley KB, Riechers DE (2011) Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci 59:445–457

    CAS  Google Scholar 

  • Morales C, Schaper M (2004) Las nuevas fronteras tecnológicas: los transgénicos y sus impactos en América Latina y el Caribe. In: Bárcena C, Katz J, Morales C, Schaper M (eds) Los transgénicos en América Latina y el Caribe: un debate Abierto, vol 1. CEPAL, Santiago de Chile, pp 191–267

    Google Scholar 

  • Mugni H, Paracampo A, Demetrio P, Scalise A, Solís M, Fanelli S, Bonetto C (2015) Acute toxicity of endosulfan to the non-target organisms Hyalella curvispina and Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 95:363–367

    CAS  Google Scholar 

  • Mugni HA, Paracampo A, Marrochi N, Bonetto C (2012) Cypermethrin, chlorpyrifos and endosulfan toxicity to two non-target freshwater organisms. Fresenius Environ Bull 21:2085–2089

    CAS  Google Scholar 

  • Nwani CD, Nagpure NS, Kumar R, Kushwaha B, Lakra WS (2013) DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, Channa punctatus. Environ Toxicol Pharmacol 36:539–547

    CAS  Google Scholar 

  • Pérez-Iglesias JM, Ruiz de Arcaute C, Nikoloff N, Dury L, Soloneski S, Natale GS, Larramendy M (2014) The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 104:120–126

    Google Scholar 

  • Pitarque M, Creus A, Marcos R, Hughes JA, Anderson D (1999) Examination of various biomarkers measuring genotoxic endpoints from Barcelona airport personnel. Mutat Res Genet Toxicol Environ Mutagen 440 (2):195–204

    CAS  Google Scholar 

  • Poletta GL, Kleinsorge E, Paonessa A, Mudry MD, Larriera A, Siroski PA (2011) Genetic, enzymatic and developmental alterations observed in Caiman latirostris exposed in ovo to pesticide formulations and mixtures in an experiment simulating environmental exposure. Ecotoxicol Environ Saf 74:852–859

    CAS  Google Scholar 

  • Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ Contam Toxicol 60:145–155

    CAS  Google Scholar 

  • Ruiz de Arcaute C, Larramendy ML, Soloneski S (2018a) Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces: Poeciliidae). Environ Pollut 243:670–678

    CAS  Google Scholar 

  • Ruiz de Arcaute C, Pérez-Iglesias JM, Nikoloff N, Natale GS, Soloneski S, Larramendy ML (2014a) Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indic 45:632–639

    CAS  Google Scholar 

  • Ruiz de Arcaute C, Soloneski S, Larramendy M (2014b) Evaluation of the genotoxicity of a herbicide formulation containing 3,6-dichloro-2-metoxybenzoic acid (dicamba) in circulating blood cells of the tropical fish Cnesterodon decemmaculatus. Mutat Res 773:1–8

    CAS  Google Scholar 

  • Ruiz de Arcaute C, Soloneski S, Larramendy M (2016) Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicol Environ Saf 128:222–229

    CAS  Google Scholar 

  • Ruiz de Arcaute C, Soloneski S, Larramendy ML (2018b) Opposite effects of mixtures of commercial formulations of glyphosate with auxinic herbicides on the ten spotted live-bearer fish Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Pollut 240:858–866

    CAS  Google Scholar 

  • Ruiz de Arcaute C, Soloneski S, Larramendy ML (2018c) Synergism of binary mixtures of dicamba and 2,4-dichlorophenoxyacetic acid herbicide formulations on the ten spotted live-bearer fish Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Pollut 236:33–39

    CAS  Google Scholar 

  • Schiesari L, Waichman A, Brock T, Adams C, Grillitsch B (2013) Pesticide use and biodiversity conservation in the Amazonian agricultural frontier. Philos TransR Soc London Series B 368:1–9

    Google Scholar 

  • Schmuck R, Pflüger W, Grau R, Hollihn U, Fischer R (1994) Comparison of short-term aquatic toxicity: formulation vs active ingredients of pesticides. Arch Environ Contam Toxicol 26:240–250

    CAS  Google Scholar 

  • SENASA (2013) Servicio Nacional de Sanidad y Calidad Agroalimentaria. http://www.senasa.gov.ar/contenido.php?to=n&in=1506&io=18122. Accessed June 2019

  • Silva AR, Cardoso DN, Cruz A, Lourenco J, Mendo S, Soares AM, Loureiro S (2015) Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna. Ecotoxicol Environ Saf 115:279–290

    CAS  Google Scholar 

  • Singh NP (1996) Microgel electrophoresis of DNA from individual cells. In: Pfeifer GP (ed) Technologies for detection of DNA damage and mutations. Springer, Boston. https://doi.org/10.1007/978-1-4899-0301-3_1

    Google Scholar 

  • Soloneski S, Ruiz de Arcaute C, Larramendy ML (2016) Genotoxic effect of a binary mixture of dicamba- and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ Sci Pollut Res 23:17811–17821

    CAS  Google Scholar 

  • UN (2011) Peligros para el medio ambiente. Naciones Unidas Parte 4:229–258

    Google Scholar 

  • USEPA (1974) United States Environmental Protection Agency. Compendium of Registered Pesticides US Government Printing Office, Washington

  • USEPA (1975) Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians. US Government Printing Office, Washington 660/3-75-009:62

    Google Scholar 

  • USEPA (1992) United States Environmental Protection Agency. Pesticide Ecotoxicity Database (formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, Washington

    Google Scholar 

  • USEPA (2001) United States Environmental Protection Agency Report. Environmental Hazard Assess Ecol Risk Assess Methodology. Appendix H

  • USEPA (2002) United States Environmental Protection Agency. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. US Government Printing Office, Washington 821-R-02-012

    Google Scholar 

  • USEPA (2016) United States Environmental Protection Agency. Glyphosate issue paper: evaluation of carcinogenic potential. US Government Printing Office, Washington, p 227

    Google Scholar 

  • USEPA (2019) United States Environmental Protection Agency. ECOTOX knowledgebase. https://cfpub.epa.gov/ecotox/. Last accessed May, 2019. US Government Printing Office, Washington

  • Vardia HK, Durve VS (1981) Bioassay study on some freshwater fishes exposed to 2,4-dichlorophenoxyacetic acid. Acta Hydrochim Hydrobiol 92:219–223

    Google Scholar 

  • Varona-Uribe ME et al (2016) Exposure to pesticide mixtures and DNA damage among rice field workers. Arch Environ Occupat Health 71:3–9

    CAS  Google Scholar 

  • Vera-Candioti J, Soloneski S, Larramendy M (2010) Genotoxic and cytotoxic effects of the formulated insecticide Aficida® on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces: Poeciliidae). Mutat Res 703:180–186

    Google Scholar 

  • Vera-Candioti J, Soloneski S, Larramendy M (2015) Pirimicarb-based formulation induced genotoxicity and cytotoxicity on the fresh water fish Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae). Toxicol Ind Health 31:1051–1060

    CAS  Google Scholar 

  • Vera-Candioti J, Soloneski S, Larramendy ML (2013a) Evaluation of the genotoxic and cytotoxic effects of glyphosate-based herbicides in the ten spotted live-bearer fish Cnesterodon decemmaculatus (Jenyns, 1842). Ecotoxicol Environ Saf 89:166–173

    CAS  Google Scholar 

  • Vera-Candioti J, Soloneski S, Larramendy ML (2013b) Single-cell gel electrophoresis assay in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842), as bioassay for agrochemical-induced genotoxicity. Ecotoxicol Environ Saf 98:368–373

    CAS  Google Scholar 

  • Vera-Candioti J, Soloneski S, Larramendy ML (2014) Chlorpyrifos-based insecticides induced genotoxic and cytotoxic effects in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842). Environ Toxicol 29:1390–1398

    CAS  Google Scholar 

  • Wehtje G, Gilliam CH (2012) Cost-effectiveness of glyphosate, 2,4-D, and triclopyr, alone and in select mixtures for poison ivy control. Weed Technol 26:469–473

    Google Scholar 

  • WHO-FAO (1997) Pesticides residues in food vol 145. World Health Organization and Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • WHO (2009) The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009. World Health Organization, Geneva, p 81

    Google Scholar 

  • Wright TR et al (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A 107:20240–202405

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks A. Duarte and E. Grognett from Nufarm S.A. Argentina, Buenos Aires (Argentina) for kindly providing the GLY-based commercial-grade formulation Credit® and the 2,4-D-based commercial-grade formulation Weedar® Full as well as to E. Fernandez and S. Calvo from Red Surcos S.A. (Santa Fe, Argentina) for kindly providing the 2,4-D-based commercial-grade formulation Dedalo Elite. Part of the results have been included without subjecting them to peer review in the W. F. Carvalho’s Doctoral Thesis “Genotoxic and mutagenic evaluation of herbicides in aquatic organisms” (Universidade Federal de Goiás, Brazil) (http://repositorio.bc.ufg.br/tede/handle/tede/8423). The “Programa de Doutorado Sanduíche no Exterior (CAPES-PDSE-Edital n° 19/2016, Processo: 88881.135034-2016-01, W.F.C.) is also acknowledged.

Funding

The funding for this study was provided by the National University of La Plata (Grants 11/N817 and 11/N847) and the National Agency of Scientific and Technological Promotion (PICT 2015 Number 3059) from Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo L. Larramendy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Thomas Braunbeck

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, W.F., Ruiz de Arcaute, C., Torres, L. et al. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Sci Pollut Res 27, 6515–6525 (2020). https://doi.org/10.1007/s11356-019-07379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07379-x

Keywords

Navigation