Skip to main content

Advertisement

Log in

The design of long-term air quality monitoring networks in urban areas using a spatiotemporal approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The implementation and maintenance of an air pollution monitoring program can be expensive and time consuming, especially when the aim is for long-term monitoring over a significant area. Consequently, it is essential that sites are optimized to provide the best representative cover while minimizing costs. In the past, there has been a tendency to locate sampling stations at pollution hot-spots. While this is acceptable for determining a maximum potential exposure or identifying the extent of a risk, there are limitations to this approach when assessing the potential impact of any future abatement strategies or determining the level of exposure outside the vicinity. This paper presents an approach in which representative air quality assessments can be undertaken for an urban area using the minimum number of measurement sites. A novel methodology is described that involves site selection to capture the maximum variance in measured pollutants, while minimizing spatiotemporal autocorrelation between the selected sites. A case study is presented for Yazd, Iran. Overall, the results show that the proposed methodology can be effective and enable the long-term monitoring of air pollution to be undertaken on a cost-effective basis in urban areas. In addition, there is the potential for the methodology to be utilized for other forms of pollution (e.g., water, soil, and noise).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andria, G., Cavone, G., & Lanzolla, A. M. L. (2008). Modelling study for assessment and forecasting variation of urban air pollution. Measurement, 41(3), 222–229.

    Article  Google Scholar 

  • Baldauf, R. W., Lane, D. D., Marotz, G. A., Barkman, H. W., & Pierce, T. (2002). Application of a risk assessment based approach to designing ambient air quality monitoring networks for evaluating non-cancer health impacts. Environmental Monitoring and Assessment, 78(3), 213–227.

    Article  Google Scholar 

  • Briggs, D. J., de Hoogh, C., Guiliver, J., Wills, J., Elliott, P., Kingham, S., et al. (2000). A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Science of the Total Environment, 253(1–3), 151–167.

    Article  CAS  Google Scholar 

  • Chen, C.-H., Liu, W.-L., & Chen, C.-H. (2006). Development of a multiple objective planning theory and system for sustainable air quality monitoring networks. Science of The Total Environment, 354(1), 1–19.

    Article  CAS  Google Scholar 

  • Chow, J. C., Engelbrecht, J. P., Watson, J. G., Wilson, W. E., Frank, N. H., & Zhu, T. (2002). Designing monitoring networks to represent outdoor human exposure. Chemosphere, 49(9), 961–978.

    Article  CAS  Google Scholar 

  • Ehrampoosh, M. H. (2003). Air pollution in yazd, project report19693, Iranian Information and Documentation Center, Tehran, Iran.

  • Goldberg, M. S., Burnett, R. T., Yale, J.-F., Valois, M.-F., & Brook, J. R. (2006). Associations between ambient air pollution and daily mortality among persons with diabetes and cardiovascular disease. Environmental Research, 100(2), 255–267.

    Article  CAS  Google Scholar 

  • Hadad, K., Mehdizadeh, S., & Sohrabpour, M. (2003). Impact of different pollutant sources on Shiraz air pollution using SPM elemental analysis. Environment International, 29(1), 39–43.

    Article  CAS  Google Scholar 

  • Kanaroglou, P. S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A., Gilbert, N. L., & Brook, J. R. (2005). Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmospheric Environment, 39(13), 2399–2409.

    Article  CAS  Google Scholar 

  • Kao, J.-J., & Hsieh, M.-R. (2006). Utilizing multiobjective analysis to determine an air quality monitoring network in an industrial district. Atmospheric Environment, 40(6), 1092–1103.

    Article  CAS  Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgicall and Mining Society of South Africa, 52, 119–139.

    Google Scholar 

  • Kumar, N. (2009). An optimal spatial sampling design for intra-urban population exposure assessment. Atmospheric Environment, 43(5), 1153–1155.

    Article  CAS  Google Scholar 

  • Kumar, N., Chu, A., & Foster, A. (2007). An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment, 41(21), 4492–4503.

    Article  CAS  Google Scholar 

  • Liu, C.-W., Jang, C.-S., & Liao, C.-M. (2004). Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of The Total Environment, 321(1–3), 173–188.

    Article  CAS  Google Scholar 

  • Mabit, L., & Bernard, C. (2007). Assessment of spatial distribution of fallout radionuclides through geostatistics concept. Journal of Environmental Radioactivity, 97(2–3), 206–219.

    Article  CAS  Google Scholar 

  • Nejadkoorki, F., Nicholson, K., Lake, I., & Davies, T. (2008). An approach for modelling CO2 emissions from road traffic in urban areas. Science of The Total Environment, 406(1–2), 269–278.

    Article  CAS  Google Scholar 

  • Ott, D. K., Kumar, N., & Peters, T. M. (2008). Passive sampling to capture spatial variability in PM10-2.5. Atmospheric Environment, 42(4), 746–756.

    Article  CAS  Google Scholar 

  • Sales, M. H., Souza, C. M., Jr, Kyriakidis, P. C., Roberts, D. A., & Vidal, E. (2007). Improving spatial distribution estimation of forest biomass with geostatistics: A case study for Rondônia, Brazil. Ecological Modelling, 205(1–2), 221–230.

    Article  Google Scholar 

  • Silva, C., & Quiroz, A. (2003). Optimization of the atmospheric pollution monitoring network at Santiago de Chile. Atmospheric Environment, 37(17), 2337–2345.

    Article  CAS  Google Scholar 

  • Sohrabpour, M., Mirzaee, H., Rostami, S., & Athari, M. (1999). Elemental concentration of the suspended particulate matter in the air of Tehran. Environment International, 25(1), 75–81.

    Article  CAS  Google Scholar 

  • The Office of National Statistics (2007). The 2007 census.the office of national statistics. Tehran, Iran.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Nejadkoorki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nejadkoorki, F., Nicholson, K. & Hadad, K. The design of long-term air quality monitoring networks in urban areas using a spatiotemporal approach. Environ Monit Assess 172, 215–223 (2011). https://doi.org/10.1007/s10661-010-1328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1328-4

Keywords

Navigation