Skip to main content

Advertisement

Log in

Impacts of forest harvesting on mobilization of Hg and MeHg in drained peatland forests on black schist or felsic bedrock

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Forest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008–2012). Four of the catchments were on felsic bedrock and four on black schist bedrock containing heavy metals. Although both Hg and MeHg concentrations increased after harvesting in all treated sites according to the randomized intervention analyses (RIAs), there was only a weak indication of a harvest-induced mobilization of Hg and MeHg into the ditches. Furthermore, no clear differences between WTHs and SOH were found, although MeHg showed a nearly significant difference (p = 0.06) between the harvesting regimes. However, there was a clear bedrock effect, since the MeHg concentrations in the ditch water were higher at catchments on black schist than at those on felsic bedrock. The pH, suspended solid matter (SSM), dissolved organic carbon (DOC), and iron (Fe) concentrations increased after harvest while the sulfate (SO4-S) concentration decreased. The highest abundances of sulfate-reducing bacteria (SRB) were found on the sites with high MeHg concentrations. The biggest changes in ditch water concentrations occurred first 2 years after harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aastrup, M., Johnson, J., Bringmark, E., Bringmark, L., & Iverfeldt, Å. (1991). Occurrence and transport of mercury within a small catchment area. Water, Air, and Soil Pollution, 56(1), 155–167.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments—biochemistry, bioavailability and risks of metals (pp. 411–458). USA: Springer–Verlag.

    Book  Google Scholar 

  • Bishop, K. Y., & Lee, C. (1997). Catchments as a source of mercury/methylmercury in boreal surface waters. In A. Sigel & H. Sigel (Eds.), Metal ions in biological systems: mercury and its effect on environment and biology (pp. 113–127). New York: Marcel-Dekker.

    Google Scholar 

  • Bishop, K., Allan, C., Bringmark, L., Garcia, E., Hellsten, S., Högbom, L., Johansson, K., Lomander, A., Meili, M., Munthe, J., Nilsson, M., Poevari, P., Skyllberg, U., Sørensen, R., Zetterberg, T., & Åkerblom, S. (2009). The effects of forestry on Hg bioaccumulation in nemoral/boreal waters recommendations for good silvicultural practice. Ambio, 38, 373–380.

    Article  CAS  Google Scholar 

  • Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23.

    Article  Google Scholar 

  • Branfireun, B. A., Roulet, N. T., Kelly, C. A., & Rudd, W. M. (1999). In situ sulfate stimulation of mercury methylation in a boreal peatland: toward a link between acid rain and methylmercury contamination in remote environments. Global Biogeochemical Cycles, 13(3), 743–750.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Frost, T. M., Heisey, D., & Kratz, T. K. (1989). Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology, 70, 1142–1152.

    Article  Google Scholar 

  • Caruso, B., & Dawson, H. (2009). Impacts of ground water metal loads from bedrock fractures on water quality of a mountain stream. Environmental Monitoring and Assessment., 153, 405–425.

    Article  CAS  Google Scholar 

  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: principal methylators of mercury on anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.

    CAS  Google Scholar 

  • de Wit, H. A., Granhus, A., Lindholm, M., Kainz, M. J., Lin, Y., Veiteberg Braaten, H. A., & Blaszczak, J. (2014). Forest harvest effects on mercury in streams and biota in Norwegian boreal catchments. Forest Ecology and Management, 324, 52–63.

    Article  Google Scholar 

  • Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R., & Holsapple, J. (1995). The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water, Air, and Soil Pollution, 80, 499–508.

    Article  CAS  Google Scholar 

  • Eklöf, K., Fölster, J., Sonesten, L., & Bishop, K. (2012). Spatial and temporal variation of THg concentrations in run-off water from 19 boreal catchments, 2000–2010. Environmental Pollution, 164, 102–109.

    Article  Google Scholar 

  • Eklöf, K., Meili, M., Åkerblom, S., von Brömssen, C., & Bishop, K. (2013). Impact of stump harvest on run-off concentrations of total mercury and methylmercury. Forest Ecology and Management, 290, 83–94. doi:10.1016/j.foreco.2012.05.039.

    Article  Google Scholar 

  • Eklöf, K., Schelker, J., Sørensen, R., Meili, M., Laudon, H., von Brömssen, C., & Bishop, K. (2014). Impact of forestry on total and methyl-mercury in surface waters: distinguishing effects of logging and site preparation. Environmental Science & Technology, 48, 4690–4698. dx.doi.org/10.1021/es404879p.

    Article  Google Scholar 

  • Feng, S., Zhijin, A., Zheng, S., Gu, B., & Li, Y. (2014). Effects of dryout and inflow water quality on mercury methylation in a constructed wetland. Water, Air, and Soil Pollution, 225, 1929. doi:10.1007/s11270-014-1929-6.

    Article  Google Scholar 

  • Finér, L., Kortelainen, P., Mattsson, T., Ahtiainen, M., Kubin, E., & Sallantaus, T. (2004). Sulphate and base cation concentrations and export in streams from unmanaged forested catchments in Finland. Forest Ecology and Management, 195, 115–128.

    Article  Google Scholar 

  • Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72, 457–464.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Henry, E. A., & Mitchell, R. (1992). Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology, 26(11), 2281–2287.

    Article  CAS  Google Scholar 

  • Goebel, N. L., Turk, K. A., Achilles, K. M., Paerl, R. W., Hewson, I., Morrison, A. E., Montoya, J. P., Edwards, G. A., & Zehr, J. P. (2010). Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ Microbiology, 12, 3272–3289.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: a review. Journal of Environmental Quality, 32, 393–4052.

    Article  CAS  Google Scholar 

  • Grigal, D. F., Kolka, R. K., Fleck, J. A., & Nater, E. A. (2000). Mercury budget of an upland-peatland watershed. Biogeochem., 50, 95–109.

    Article  CAS  Google Scholar 

  • Gustavsson, N., Loukola-Ruskeeniemi, K., & Tenhola, M. (2012). Evaluation of geochemical background levels around sulfide mines—a new statistical procedure with beanplots. Applied Geochem., 27(1), 240–249.

    Article  CAS  Google Scholar 

  • Hall, B. D., Aiken, G. R., Krabbenhoft, D. P., Marvin-DiPasquale, M. & Swarzenski, C. M. (2008). Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 154, 124–134. doi:10.1016/j.envpol.2007.12.017.

  • Harmens, H., Norris, D., Mills, G., & Participants of the moss survey. (2013). Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe (p. 63). United Kingdom: Centre for Ecology & Hydrology. http://icpvegetation.ceh.ac.uk/publications/.

    Google Scholar 

  • Hintelmann, H., Keppel-Jones, K., & Evans, R. D. (2000). Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology & Chemistry, 19, 2204–11.

    Article  CAS  Google Scholar 

  • Jerry, M., Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Wall, J. D., Elias, D. A., & Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science, 339(6125), 1332–1335.

    Article  Google Scholar 

  • Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., & Iverfeldt, Å. (1991). Mercury in Swedish forest soils: assessment of critical load. Water, Air, and Soil Pollution, 56, 267–281.

    Article  CAS  Google Scholar 

  • Kaila, A, Sarkkola, S, Laurén, A, Ukonmaanaho, L, Koivusalo, H, Xiao, L, O’Driscoll, C, Asam, Z, Tervahauta, A, & Nieminen, M (2014). Phosphorus export from drained Scots pine mires after clear-felling and bioenergy harvesting. Forest Ecology and Management, 325(2.5.2014), 99–107.

  • Kaila, A., Laurén, A., Sarkkola, S., Koivusalo, H., Ukonmaanaho, L., O’Driscoll, C., Xiao, L., Asam, Z., & Nieminen, M. (2015). Effect of clear-felling and harvest residue removal on nitrogen and phosphorus export from drained Norway spruce mires in southern Finland. Boreal Environment Research, 20, 693–706.

    Google Scholar 

  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury methylation by dissimilatory iron reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. doi:10.1128/AEM.01602-06.

    Article  CAS  Google Scholar 

  • Kerndorf, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geoch. et Cosm. Acta., 44, 1701–1708.

    Article  Google Scholar 

  • Koivusalo, H., Ahti, E., Laurén, A., Kokkonen, T., Karvonen, T., Nevalainen, R., & Finér, L. (2008). Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrology and Earth System Sciences, 12, 1211–1227.

    Article  Google Scholar 

  • Kondo, J., Nedwell, D. B., Purdy, K. J., & de Queiroz Silva, S. (2004). Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiology Journal, 21, 145–157.

    Article  CAS  Google Scholar 

  • Lahermo, P., Väänänen, P., Tarvainen, T., & Salminen, R. (1996). Suomen geokemian atlas. Osa 3: ympäristögeokemia—purovedet ja sedimentit. In Geochemical atlas of Finland (Part 3: environmental geochemistry—stream waters and sediments, p. 149). Espoo: Geologian tutkimuskeskus.

    Google Scholar 

  • Lee, Y. H., & Hultberg, H. (1990). Methyl mercury in some Swedish surface waters. Environ Technol Chem, 9, 833–841.

    CAS  Google Scholar 

  • Lee, Y. H., Bishop, K. H., Pettersson, C., Iverfeldt, Å., & Allard, B. (1995). Subcatchment output of mercury and methylmercury at Svartberget in northern Sweden. Water, Air, and Soil Pollution, 80, 455–465.

    Article  CAS  Google Scholar 

  • Loukola-Ruskeeniemi, K. (1990). Metalliferous black shales—a probable source of mercury in pike in Lake Kolmisoppi, Sotkamo, Finland. Bulletin of the Geological Society of Finland, 62(2), 167–175.

    Google Scholar 

  • Loukola-Ruskeeniemi, K., & Heino, T. (1996). Geochemistry and genesis of the black schist-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Economic Geology, 91, 80–110.

    Article  CAS  Google Scholar 

  • Loukola-Ruskeeniemi, K., & Lahtinen, H. (2013). Multiphase evolution in the black-shale-hosted Ni-Cu-Zn-Co deposit at Talvivaara, Finland. Ore Geology Reviews, 52, 85–99.

    Article  Google Scholar 

  • Loukola-Ruskeeniemi, K., Uutela, A., Tenhola, M., & Paukola, T. (1998). Environmental impact of metalliferous black schist at Talvivaara in Finland, with indication of lake acidification 9000 years ago. Journal of Geochemical Exploration, 64, 395–407.

    Article  CAS  Google Scholar 

  • Loukola-Ruskeeniemi, K., Kantola, M., Halonen, T., Seppänen, K., Henttonen, P., Kallio, E., Kurki, P., & Savolainen, H. (2003). Mercury-bearing black shales and human Hg intake in eastern Finland: impact and mechanisms. Environmental Geology, 43, 283–297.

    CAS  Google Scholar 

  • Mäkilä, M., Nieminen, T. M., Säävuori, H., Loukola-Ruskeeniemi, K., & Ukonmaanaho, L. (2015). Does underlying bedrock affect the geochemistry of drained peatlands? Geoderma, 239–240, 280–292. doi:10.1016/j.geoderma.2014.11.002.

    Article  Google Scholar 

  • Mauro, J. B. N., Guimaranes, J. R. D., & Melamed, R. (1999). Mercury methylation in a tropical macrophyte: influence of abiotic parameters. Appl. Organometal. Chem., 13, 631–636.

    Article  CAS  Google Scholar 

  • Miettinen, J., Ollikainen, M., Nieminen, T. M., Ukonmaanaho, L., Lauren, A., Hynynen, J., Lehtonen, M., & Valsta, L. (2013). Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter. Forest Policy and Economics, 47, 25–35. http://dx.doi.org./10.1016/j.forpol.2013.08.005.

    Article  Google Scholar 

  • Miskimmin, B., Rudd, J. W. M., & Kelly, C. A. (1992). Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can. J. Fish. Aquatic Sci., 49, 17–22. doi:10.1139/f92.

    Article  CAS  Google Scholar 

  • Munthe, J., Wängberg, I., Rognerud, S., Fjedl, E., Verta, M., Porvari, P., & Meili, M. (2007). Mercury in Nordic ecosystems. IVL Report, B1761.

  • Murray, C. D., & Buttle, J. M. (2003). Impacts of clearcut harvesting on snow accumulation and melt in northern hardwood forest. Journal of Hydrology, 271(1–4), 197–212.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, part I—a discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Nieminen, M. (2004). Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fennica, 38(2), 123–132.

    Article  Google Scholar 

  • Nieminen, M., Ahti, E., Koivusalo, H., Mattsson, T., Sarkkola, S., & Laurén, A. (2010). Export of suspended solids and dissolved elements from peatland areas after ditch network maintenance in south-central Finland. Silva Fennica, 44(1), 39–49.

    Article  Google Scholar 

  • Nieminen, M., Koskinen, M., Sarkkola, S., Laurén, A., Kaila, A., Kiikkilä, O., Nieminen, T. M., & Ukonmaanaho, L. (2015). Dissolved organic carbon export from harvested peatland forests with differing site characteristics. Water, Air, and Soil Pollution, 226, 181. doi:10.1007/s11270-015-2444-0.

    Article  Google Scholar 

  • Paavilainen, E., & Päivänen, J. (1995). Peatland forestry: ecology and principles (Ecological studies 111). Berlin Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Parviainen, A., Mäkilä, M., & Loukola-Ruskeeniemi, K. (2014). Pre-mining acid rock drainage in the Talvivaara Ni-Cu-Zn-Co deposit (Finland): natural peat layers as a natural analogue to constructed wetlands. Journal of Geochemical Exploration, 143, 84–95.

    Article  CAS  Google Scholar 

  • Pietilä, H., Perämäki, P., Piispanen, J., Majuri, L., Starr, M., Nieminen, T. M., Kantola, M., & Ukonmaanaho, L. (2014). Determination of methyl mercury in humic-rich natural water samples using N2-distillation with isotope dilution and on-line purge and trap GC-ICP-MS. Microchemical Journal, 112, 113–118.

    Article  Google Scholar 

  • Pietilä, H., Perämäki, P., Piispanen, J., Starr, M., Nieminen, T. M., Kantola, M., & Ukonmaanaho, L. (2015). Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods. Chemosphere, 124, 47–53. dx.doi.org/10.1016/j.chemosphere.2014.11.001.

    Article  Google Scholar 

  • Pirinen, P., Simola, H., Aalto, J., Kaukoranta, J. P., Karlsson, P., & Ruuhela, R. (2012). Tilastoja Suomen ilmastosta 1981–2010—Climatological statistics of Finland 1981–2010. Reports, 2012, 1.

    Google Scholar 

  • Porvari, P., & Verta, M. (2003). Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland. Environmental Pollution, 123, 181–191.

    Article  CAS  Google Scholar 

  • Porvari, P., Verta, M., Munthe, J., & Haapanen, M. (2003). Forestry practises increases mercury and methyl mercury output from boreal forest catchments. Environ Sci Techn., 37(11), 2389–2393.

    Article  CAS  Google Scholar 

  • Pyhtilä, H., Perämäki, P., Piispanen, J., Niemelä, M., Suoranta, T., Starr, M., Nieminen, T. M., Kantola, M., & Ukonmaanaho, L. (2012). Development and optimization of a method for detecting low mercury concentrations in humic-rich natural water samples using a CV-ICP-MS technique. Microchemical Journal, 103, 165–169.

    Article  Google Scholar 

  • Pyhtilä, H., Niemelä, M., Perämäki, P., Piispanen, J., & Ukonmaanaho, L. (2013). The use of a dual mode sample introduction system for internal standardization in the determination of Hg at the ng L-1 level by cold vapor ICP-MS. Analytical Methods, 5, 3082–3088.

    Article  Google Scholar 

  • R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 09 May 2014.

  • Ramamoorthy, SDJ, & Kushner, DJ (1975). Heavy metal binding components of river water. J. Fish. Res. Board Can., l. 32 (10), 1755–1766 doi: 10.1139/f75-209.

  • Reddy, MM, & Aiken, GR (2001). Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades. Water Air Soil Pollut. 132, 89–104

  • Repola, J. (2009). Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica, 43(4), 625–647.

    Article  Google Scholar 

  • Ronkanen, A. K., & Kløve, B. (2007). Use of stabile isotopes and tracers to detect preferential flow patterns in a peatland treating municipal wastewater. Journal of Hydrology, 347, 418–429.

    Article  CAS  Google Scholar 

  • Saarelainen, J., & Vanne, J. (1997). Sotkamon jääjärvi (Sotkamo Ice Lake). Terra, 109, 25–38.

    Google Scholar 

  • Salminen, H., Lehtonen, M., & Hynynen, J. (2005). Reusing legacy FORTRAN in the MOTTI growth and yield simulator. Computers and Electronics in Agriculture, 49, 103–113.

    Article  Google Scholar 

  • Shanley, J. B., Kamman, N. C., Clair, T. A., & Chalmers, A. (2005). Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA. Ecotoxicology, 14, 125–134.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Westin, M. B., Meili, B., & Björn, E. (2009). Elevated concentrations of methyl mercury in streams after forest clear-cut. A consequence of mobilization from soil or new methylation? Environmental Science and Technology, 43, 8535–41.

    Article  CAS  Google Scholar 

  • Sørensen, R., Meili, M., Lambertsson, L., von Brömssen, C., & Bishop, K. (2009). The effects of forest harvest operations on mercury and methylmercury in two boreal streams. Ambio, 38, 364–372.

    Article  Google Scholar 

  • Spence, C., Whitehead, T. R., & Cotta, M. A. (2008). Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure. Journal of Applied Microbiology, 105, 2143–2152.

    Article  CAS  Google Scholar 

  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Bloom, N. S., & Flett, R. J. (1994). Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1065–76.

    Article  CAS  Google Scholar 

  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Flett, R. J., & Roulet, N. T. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science & Technology, 30(9), 2719–2729.

    Article  CAS  Google Scholar 

  • Tjerngren, I., Karlsson, T., Björn, E., & Skyllberg, U. (2012). Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry, 108, 335–350.

    Article  CAS  Google Scholar 

  • US EPA 1630. (2001). Methyl mercury in water by distillation, aqueous, ethylation, purge and trap, and cold vapor atomic fluorescence spectrometry. Washington: USEPA Office of Water, Report EPA 821-R-01-020, 2001.

  • US EPA 1631. (2002). Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Method 1631, revision E.–Unites States Environmental Protection Agency, Washington, Report EPA-821-R-02-019, 2002.

  • US EPA 1669. (1996). Sampling ambient water for trace metals at EPA water quality criteria level. In EPA Report 821/R-96-011. Washington: USEPA, Office of Water.

    Google Scholar 

  • US EPA 3051 (1998) Microwave assisted acid digestion of sediments, sludges, soils, and oils: U.S. Environmental Protection Agency Method 3051A, revision 1, January 1998, 25 p.

  • Vainio, E. J., Korhonen, K., & Hantula, J. (1998). Genetic variation in Phlebiopsis gigantea as detected with random amplified microsatellite (RAMS) markers. Mycological Research, 102, 187–192.

    Article  Google Scholar 

  • Venäläinen, A., Tuomivirta, H., Pirinen, P., & Drebs, A. (2005). A basic Finnish climate data set 1961–2000—description and illustrations. Finnish Meteorological Institute, Helsinki, Reports, 2005, 5. 27 p.

    Google Scholar 

  • von Post, L. (1922). Sveriges Geologiska Undersöknings torvinventering och några av dess hittils vunna resultat (in Swedish). Svenska Mosskulturföreningens tidsskrift, 1, 1–27.

    Google Scholar 

  • Warner, K. A., Roden, E. E., & Bonzongo, J. C. (2003). Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environmental Science & Technology, 37, 2159–2165.

    Article  CAS  Google Scholar 

  • Zilloux, E. J., Porcella, D. B., & Benoit, J. M. (1993). Mercury cycling and effects in freshwater wetland ecosystems. Environmental Toxicology & Chemistry, 12, 2245–2264.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Natural Resources Institute Finland’s (former Finnish Forest Research Institute) field technicians for collecting the samples from the study sites as well as the laboratory staff for carrying out the pre-treatment and analyses of the samples. This study was funded by Finnish Forest Research Institute, the Geological Survey of Finland, the University of Helsinki, and the University of Oulu with co-funding provided by the Academy of Finland project Hydro-biogeochemistry of drained peatlands: impacts of bioenergy harvesting on trace metal transport under different hydrogeological settings (HYPE) (project no. 132447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Ukonmaanaho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary figure. Map of the studied catchments. Brown patches are harvested peatland area and green patches are mineral soil. Note that map of the FS_SOH is in smaller scale than other maps (PNG 224 kb)

ESM 2

Supplementary data, Table 1. Ditch water Hg and MeHg concentrations (ng L−1) before harvesting (2008) and after harvesting (2009 and average of 2010–2012); standard deviation (SD) is in italics (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukonmaanaho, L., Starr, M., Kantola, M. et al. Impacts of forest harvesting on mobilization of Hg and MeHg in drained peatland forests on black schist or felsic bedrock. Environ Monit Assess 188, 228 (2016). https://doi.org/10.1007/s10661-016-5210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5210-x

Keywords

Navigation